当前位置:首页 » 《我的小黑屋》 » 正文

Stable Diffusion | Gradio界面设计及webUI API调用

20 人参与  2024年09月09日 18:41  分类 : 《我的小黑屋》  评论

点击全文阅读


本文基于webUI API编写了类似于webUI的Gradio交互式界面,支持文生图/图生图(SD1.x,SD2.x,SDXL),Embedding,Lora,X/Y/Z Plot,ADetailer、ControlNet,超分放大(Extras),图片信息读取(PNG Info)。

1. 在线体验

本文代码已部署到百度飞桨AI Studio平台,以供大家在线体验Stable Diffusion ComfyUI/webUI 原版界面及自制Gradio界面。

项目链接:Stable Diffusion webUI 在线体验

2. 自制Gradio界面展示

文生图界面:

Adetailer 设置界面:

ControlNet 设置界面:

X/Y/Z Plot 设置界面:

图生图界面:

图片放大界面:

图片信息读取界面:

3. Gradio界面设计及webUI API调用

import base64import datetimeimport ioimport osimport reimport subprocessimport gradio as grimport requestsfrom PIL import Image, PngImagePlugindesign_mode = 1save_images = "Yes"url = "http://127.0.0.1:7860"if design_mode == 0:    cmd = "netstat -tulnp"    netstat_output = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout.splitlines()    for i in netstat_output:        if "stable-diffus" in i:            port = int(re.findall(r'\d+', i)[6])            url = f"http://127.0.0.1:{port}"output_dir = os.getcwd() + "/output/" + datetime.date.today().strftime("%Y-%m-%d")os.makedirs(output_dir, exist_ok=True)os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"default = {    "prompt": "(best quality:1), (high quality:1), detailed/(extreme, highly, ultra/), realistic, 1girl/(beautiful, delicate, perfect/)",    "negative_prompt": "(worst quality:1), (low quality:1), (normal quality:1), lowres, signature, blurry, watermark, duplicate, bad link, plump, bad anatomy, extra arms, extra digits, missing finger, bad hands, bad feet, deformed, error, mutation, text",    "clip_skip": 1,    "width": 512,    "height": 768,    "size_step": 64,    "steps": 20,    "cfg": 7,    "ad_nums": 2,    "ad_model": ["face_yolov8n.pt", "hand_yolov8n.pt"],    "cn_nums": 3,    "cn_type": "Canny",    "gallery_height": 600,    "lora_weight": 0.8,    "hidden_models": ["stable_cascade_stage_c", "stable_cascade_stage_b", "svd_xt_1_1", "control_v11p_sd15_canny", "control_v11f1p_sd15_depth", "control_v11p_sd15_openpose"]}samplers = []response = requests.get(url=f"{url}/sdapi/v1/samplers").json()for i in range(len(response)):    samplers.append(response[i]["name"])schedulers = []response = requests.get(url=f"{url}/sdapi/v1/schedulers").json()for i in range(len(response)):    schedulers.append(response[i]["label"])upscalers = []response = requests.get(url=f"{url}/sdapi/v1/upscalers").json()for i in range(len(response)):    upscalers.append(response[i]["name"])sd_models = []sd_models_list = {}response = requests.get(url=f"{url}/sdapi/v1/sd-models").json()for i in range(len(response)):    path, sd_model = os.path.split(response[i]["title"])    sd_model_name, sd_model_extension = os.path.splitext(sd_model)    if not sd_model_name in default["hidden_models"]:        sd_models.append(sd_model)        sd_models_list[sd_model] = response[i]["title"]sd_models = sorted(sd_models)sd_vaes = ["Automatic", "None"]response = requests.get(url=f"{url}/sdapi/v1/sd-vae").json()for i in range(len(response)):    sd_vaes.append(response[i]["model_name"])embeddings = []response = requests.get(url=f"{url}/sdapi/v1/embeddings").json()for key in response["loaded"]:    embeddings.append(key)extensions = []response = requests.get(url=f"{url}/sdapi/v1/extensions").json()for i in range(len(response)):    extensions.append(response[i]["name"])loras = []loras_name = {}loras_activation_text = {}response = requests.get(url=f"{url}/sdapi/v1/loras").json()for i in range(len(response)):    lora_name = response[i]["name"]    lora_info = requests.get(url=f"{url}/tacapi/v1/lora-info/{lora_name}").json()    if lora_info and "sd version" in lora_info:        lora_type = lora_info["sd version"]        lora_name_type = f"{lora_name} ({lora_type})"    else:        lora_name_type = f"{lora_name}"    loras.append(lora_name_type)    loras_name[lora_name_type] = lora_name    if "activation text" in loras_activation_text:        loras_activation_text[lora_name_type] = lora_info["activation text"]xyz_args = {}xyz_plot_types = {}last_choice = "Size"response = requests.get(url=f"{url}/sdapi/v1/script-info").json()for i in range(len(response)):    if response[i]["name"] == "x/y/z plot":        if response[i]["is_img2img"] == False:            xyz_plot_types["txt2img"] = response[i]["args"][0]["choices"]            choice_index = xyz_plot_types["txt2img"].index(last_choice) + 1            xyz_plot_types["txt2img"] = xyz_plot_types["txt2img"][:choice_index]        else:            xyz_plot_types["img2img"] = response[i]["args"][0]["choices"]            choice_index = xyz_plot_types["img2img"].index(last_choice) + 1            xyz_plot_types["img2img"] = xyz_plot_types["img2img"][:choice_index]if "adetailer" in extensions:    ad_args = {"txt2img": {}, "img2img": {}}    ad_skip_img2img = False    ad_models = ["None"]    response = requests.get(url=f"{url}/adetailer/v1/ad_model").json()    for key in response["ad_model"]:        ad_models.append(key)if "sd-webui-controlnet" in extensions:    cn_args = {"txt2img": {}, "img2img": {}}    cn_types = []    cn_types_list = {}    response = requests.get(url=f"{url}/controlnet/control_types").json()    for key in response["control_types"]:        cn_types.append(key)        cn_types_list[key] = response["control_types"][key]    cn_default_type = default["cn_type"]    cn_module_list = cn_types_list[cn_default_type]["module_list"]    cn_model_list = cn_types_list[cn_default_type]["model_list"]    cn_default_option = cn_types_list[cn_default_type]["default_option"]    cn_default_model = cn_types_list[cn_default_type]["default_model"]def save_image(image, part1, part2):    counter = 1    image_name = f"{part1}-{part2}-{counter}.png"    while os.path.exists(os.path.join(output_dir, image_name)):        counter += 1        image_name = f"{part1}-{part2}-{counter}.png"    image_path = os.path.join(output_dir, image_name)    image_metadata = PngImagePlugin.PngInfo()    for key, value in image.info.items():        if isinstance(key, str) and isinstance(value, str):            image_metadata.add_text(key, value)    image.save(image_path, format="PNG", pnginfo=image_metadata)def pil_to_base64(image_pil):    buffer = io.BytesIO()    image_pil.save(buffer, format="png")    image_buffer = buffer.getbuffer()    image_base64 = base64.b64encode(image_buffer).decode("utf-8")    return image_base64def base64_to_pil(image_base64):    image_binary = base64.b64decode(image_base64)    image_pil = Image.open(io.BytesIO(image_binary))    return image_pildef format_prompt(prompt):    prompt = re.sub(r"\s+,", ",", prompt)    prompt = re.sub(r"\s+", " ", prompt)    prompt = re.sub(",,+", ",", prompt)    prompt = re.sub(",", ", ", prompt)    prompt = re.sub(r"\s+", " ", prompt)    prompt = re.sub(r"^,", "", prompt)    prompt = re.sub(r"^ ", "", prompt)    prompt = re.sub(r" $", "", prompt)    prompt = re.sub(r",$", "", prompt)    prompt = re.sub(": ", ":", prompt)    return promptdef post_interrupt():    global interrupt    interrupt = True    requests.post(url=f"{url}/sdapi/v1/interrupt").json()def gr_update_visible(visible):    return gr.update(visible=visible)def ordinal(n: int) -> str:    d = {1: "st", 2: "nd", 3: "rd"}    return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th"))def add_lora(prompt, lora):    lora_weight = default["lora_weight"]    prompt = re.sub(r"<[^<>]+>", "", prompt)    for elem in loras_activation_text:        prompt = re.sub(loras_activation_text[elem], "", prompt)    prompt = format_prompt(prompt)    for elem in lora:        lora_name = loras_name[elem]        if elem in loras_activation_text:            lora_activation_text = loras_activation_text[elem]        else:            lora_activation_text = ""        if lora_activation_text == "":            prompt = f"{prompt}, <lora:{lora_name}:{lora_weight}>"        else:            prompt = f"{prompt}, <lora:{lora_name}:{lora_weight}> {lora_activation_text}"    return promptdef add_embedding(negative_prompt, embedding):    for elem in embeddings:        negative_prompt = re.sub(f"{elem},", "", negative_prompt)    negative_prompt = format_prompt(negative_prompt)    for elem in embedding[::-1]:        negative_prompt = f"{elem}, {negative_prompt}"    return negative_promptdef add_xyz_plot(payload, gen_type):    global xyz_args    if gen_type in xyz_args:        payload["script_name"] = "X/Y/Z plot"        payload["script_args"] = xyz_args[gen_type]    return payloaddef xyz_update_args(*args):    gen_type, enable_xyz_plot, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode = args    global xyz_args    x_type = xyz_plot_types[gen_type].index(x_type)    y_type = xyz_plot_types[gen_type].index(y_type)    z_type = xyz_plot_types[gen_type].index(z_type)    args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]    if enable_xyz_plot == True:        xyz_args[gen_type] = args    else:        del xyz_args[gen_type]def xyz_update_choices(xyz_type):    choices = []    if xyz_type == "Checkpoint name":        choices = sd_models    if xyz_type == "VAE":        choices = sd_vaes    if xyz_type == "Sampler":        choices = samplers    if xyz_type == "Schedule type":        choices = schedulers    if xyz_type == "Hires sampler":        choices = samplers    if xyz_type == "Hires upscaler":        choices = upscalers    if xyz_type == "Always discard next-to-last sigma":        choices = ["False", "True"]    if xyz_type == "SGM noise multiplier":        choices = ["False", "True"]    if xyz_type == "Refiner checkpoint":        choices = sd_models    if xyz_type == "RNG source":        choices = ["GPU", "CPU", "NV"]    if xyz_type == "FP8 mode":        choices = ["Disable", "Enable for SDXL", "Enable"]    if choices == []:        return gr.update(visible=True, value=None), gr.update(visible=False)    else:        return gr.update(visible=False), gr.update(visible=True, choices=choices)def xyz_blocks(gen_type):    with gr.Blocks() as demo:        with gr.Row():            xyz_gen_type = gr.Textbox(visible=False, value=gen_type)            enable_xyz_plot = gr.Checkbox(label="Enable")        with gr.Row():            x_type = gr.Dropdown(xyz_plot_types[gen_type], label="X type", value=xyz_plot_types[gen_type][1])            x_values = gr.Textbox(label="X values", lines=1)            x_values_dropdown = gr.Dropdown(label="X values", visible=False, multiselect=True, interactive=True)        with gr.Row():            y_type = gr.Dropdown(xyz_plot_types[gen_type], label="Y type", value=xyz_plot_types[gen_type][0])            y_values = gr.Textbox(label="Y values", lines=1)            y_values_dropdown = gr.Dropdown(label="Y values", visible=False, multiselect=True, interactive=True)        with gr.Row():            z_type = gr.Dropdown(xyz_plot_types[gen_type], label="Z type", value=xyz_plot_types[gen_type][0])            z_values = gr.Textbox(label="Z values", lines=1)            z_values_dropdown = gr.Dropdown(label="Z values", visible=False, multiselect=True, interactive=True)        with gr.Row():            with gr.Column():                draw_legend = gr.Checkbox(label='Draw legend', value=True)                no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)                vary_seeds_x = gr.Checkbox(label='Vary seeds for X', value=False)                vary_seeds_y = gr.Checkbox(label='Vary seeds for Y', value=False)                vary_seeds_z = gr.Checkbox(label='Vary seeds for Z', value=False)            with gr.Column():                include_lone_images = gr.Checkbox(label='Include Sub Images', value=True)                include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False)                csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False)                margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2)        x_type.change(fn=xyz_update_choices, inputs=x_type, outputs=[x_values, x_values_dropdown])        y_type.change(fn=xyz_update_choices, inputs=y_type, outputs=[y_values, y_values_dropdown])        z_type.change(fn=xyz_update_choices, inputs=z_type, outputs=[z_values, z_values_dropdown])        xyz_inputs = [xyz_gen_type, enable_xyz_plot, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, vary_seeds_x, vary_seeds_y, vary_seeds_z, margin_size, csv_mode]        for gr_block in xyz_inputs:            if type(gr_block) is gr.components.slider.Slider:                gr_block.release(fn=xyz_update_args, inputs=xyz_inputs, outputs=None)            else:                gr_block.change(fn=xyz_update_args, inputs=xyz_inputs, outputs=None)    return demodef add_adetailer(payload, gen_type):    global ad_args, ad_skip_img2img    args = ad_args[gen_type]    args = dict(sorted(args.items(), key=lambda x: x[0]))    payload["alwayson_scripts"]["adetailer"] = {"args": []}    if args == {}:        return payload    if gen_type == "img2img":        payload["alwayson_scripts"]["adetailer"]["args"] = [True, ad_skip_img2img]    else:        payload["alwayson_scripts"]["adetailer"]["args"] = [True, False]    for i in args:        payload["alwayson_scripts"]["adetailer"]["args"].append(args[i])    return payloaddef ad_update_args(*args):    if "sd-webui-controlnet" in extensions:        ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face, ad_controlnet_model, ad_controlnet_module, ad_controlnet_weight, ad_controlnet_guidance_start, ad_controlnet_guidance_end = args    else:        ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face = args    global ad_args    args = {        "ad_model": ad_model,        "ad_model_classes": "",        "ad_prompt": ad_prompt,        "ad_negative_prompt": ad_negative_prompt,        "ad_confidence": ad_confidence,        "ad_mask_k_largest": ad_mask_k_largest,        "ad_mask_min_ratio": ad_mask_min_ratio,        "ad_mask_max_ratio": ad_mask_max_ratio,        "ad_dilate_erode": ad_dilate_erode,        "ad_x_offset": ad_x_offset,        "ad_y_offset": ad_y_offset,        "ad_mask_merge_invert": ad_mask_merge_invert,        "ad_mask_blur": ad_mask_blur,        "ad_denoising_strength": ad_denoising_strength,        "ad_inpaint_only_masked": ad_inpaint_only_masked,        "ad_inpaint_only_masked_padding": ad_inpaint_only_masked_padding,        "ad_use_inpaint_width_height": ad_use_inpaint_width_height,        "ad_inpaint_width": ad_inpaint_width,        "ad_inpaint_height": ad_inpaint_height,        "ad_use_steps": ad_use_steps,        "ad_steps": ad_steps,        "ad_use_cfg_scale": ad_use_cfg_scale,        "ad_cfg_scale": ad_cfg_scale,        "ad_use_checkpoint": ad_use_checkpoint,        "ad_checkpoint": ad_checkpoint,        "ad_use_vae": ad_use_vae,        "ad_vae": ad_vae,        "ad_use_sampler": ad_use_sampler,        "ad_sampler": ad_sampler,        "ad_scheduler": ad_scheduler,        "ad_use_noise_multiplier": ad_use_noise_multiplier,        "ad_noise_multiplier": ad_noise_multiplier,        "ad_use_clip_skip": ad_use_clip_skip,        "ad_clip_skip": ad_clip_skip,        "ad_restore_face": ad_restore_face,    }    if "sd-webui-controlnet" in extensions:        args["ad_controlnet_model"] = ad_controlnet_model        args["ad_controlnet_module"] = ad_controlnet_module        args["ad_controlnet_weight"] = ad_controlnet_weight        args["ad_controlnet_guidance_start"] = ad_controlnet_guidance_start        args["ad_controlnet_guidance_end"] = ad_controlnet_guidance_end    if enable_ad == True:        ad_args[ad_gen_type][ad_num] = args    else:        del ad_args[ad_gen_type][ad_num]def ad_update_cn_module_choices(ad_controlnet_model):    if ad_controlnet_model == "control_v11f1p_sd15_depth [1a8eb83c]":        return gr.update(choices=["depth_midas", "depth_hand_refiner"], visible=True, value="depth_midas")    if ad_controlnet_model == "control_v11p_sd15_inpaint [dfe64acb]":        return gr.update(choices=["inpaint_global_harmonious", "inpaint_only", "inpaint_only+lama"], visible=True, value="inpaint_global_harmonious")    if ad_controlnet_model == "control_v11p_sd15_lineart [2c3004a6]":        return gr.update(choices=["lineart_coarse", "lineart_realistic", "lineart_anime", "lineart_anime_denoise"], visible=True, value="lineart_coarse")    if ad_controlnet_model == "control_v11p_sd15_openpose [52e0ea54]":        return gr.update(choices=["openpose_full", "dw_openpose_full"], visible=True, value="openpose_full")    if ad_controlnet_model == "control_v11p_sd15_scribble [46a6fcd7]":        return gr.update(choices=["t2ia_sketch_pidi"], visible=True, value="t2ia_sketch_pidi")    if ad_controlnet_model == "control_v11p_sd15s2_lineart_anime [19a26aa8]":        return gr.update(choices=["lineart_coarse", "lineart_realistic", "lineart_anime", "lineart_anime_denoise"], visible=True, value="lineart_coarse")    return gr.update(visible=False)def ad_update_skip_img2img(arg):    global ad_skip_img2img    ad_skip_img2img = argdef ad_blocks(i, gen_type):    with gr.Blocks() as demo:        ad_gen_type = gr.Textbox(visible=False, value=gen_type)        ad_num = gr.Textbox(visible=False, value=i)        enable_ad = gr.Checkbox(label="Enable")        ad_model = gr.Dropdown(ad_models, label="ADetailer model", value=default["ad_model"][i])        ad_prompt = gr.Textbox(show_label=False, placeholder="ADetailer prompt" + "\nIf blank, the main prompt is used.", lines=3)        ad_negative_prompt = gr.Textbox(show_label=False, placeholder="ADetailer negative prompt" + "\nIf blank, the main negative prompt is used.", lines=3)        with gr.Tab("Detection"):            with gr.Row():                ad_confidence = gr.Slider(label="Detection model confidence threshold", minimum=0, maximum=1, step=0.01, value=0.3)                ad_mask_min_ratio = gr.Slider(label="Mask min area ratio", minimum=0, maximum=1, step=0.001, value=0)            with gr.Row():                ad_mask_k_largest = gr.Slider(label="Mask only the top k largest (0 to disable)", minimum=0, maximum=10, step=1, value=0)                ad_mask_max_ratio = gr.Slider(label="Mask max area ratio", minimum=0, maximum=1, step=0.001, value=1)        with gr.Tab("Mask Preprocessing"):            with gr.Row():                ad_x_offset = gr.Slider(label="Mask x(→) offset", minimum=-200, maximum=200, step=1, value=0)                ad_y_offset = gr.Slider(label="Mask y(↑) offset", minimum=-200, maximum=200, step=1, value=0)            ad_dilate_erode = gr.Slider(label="Mask erosion (-) / dilation (+)", minimum=-128, maximum=128, step=4, value=4)            ad_mask_merge_invert = gr.Radio(["None", "Merge", "Merge and Invert"], label="Mask merge mode", value="None")        with gr.Tab("Inpainting"):            with gr.Row():                ad_mask_blur = gr.Slider(label="Inpaint mask blur", minimum=0, maximum=64, step=1, value=4)                ad_denoising_strength = gr.Slider(label="Inpaint denoising strength", minimum=0, maximum=1, step=0.01, value=0.4)            with gr.Row():                ad_inpaint_only_masked = gr.Checkbox(label="Inpaint only masked", value=True)                ad_use_inpaint_width_height = gr.Checkbox(label="Use separate width/height")            with gr.Row():                ad_inpaint_only_masked_padding = gr.Slider(label="Inpaint only masked padding, pixels", minimum=0, maximum=256, step=4, value=32)                with gr.Column():                    ad_inpaint_width = gr.Slider(label="inpaint width", minimum=64, maximum=2048, step=default["size_step"], value=512)                    ad_inpaint_height = gr.Slider(label="inpaint height", minimum=64, maximum=2048, step=default["size_step"], value=512)            with gr.Row():                ad_use_steps = gr.Checkbox(label="Use separate steps")                ad_use_cfg_scale = gr.Checkbox(label="Use separate CFG scale")            with gr.Row():                ad_steps = gr.Slider(label="ADetailer steps", minimum=1, maximum=150, step=1, value=28)                ad_cfg_scale = gr.Slider(label="ADetailer CFG scale", minimum=0,  maximum=30, step=0.5, value=7)            with gr.Row():                ad_use_checkpoint = gr.Checkbox(label="Use separate checkpoint")                ad_use_vae = gr.Checkbox(label="Use separate VAE")            with gr.Row():                ckpts = ["Use same checkpoint"]                for model in sd_models:                    ckpts.append(model)                ad_checkpoint = gr.Dropdown(ckpts, label="ADetailer checkpoint", value=ckpts[0])                vaes = ["Use same VAE"]                for vae in sd_vaes:                    vaes.append(vae)                ad_vae = gr.Dropdown(vaes, label="ADetailer VAE", value=vaes[0])            ad_use_sampler = gr.Checkbox(label="Use separate sampler")            with gr.Row():                ad_sampler = gr.Dropdown(samplers, label="ADetailer sampler", value=samplers[0])                scheduler_names = ["Use same scheduler"]                for scheduler in schedulers:                    scheduler_names.append(scheduler)                ad_scheduler = gr.Dropdown(scheduler_names, label="ADetailer scheduler", value=scheduler_names[0])            with gr.Row():                ad_use_noise_multiplier = gr.Checkbox(label="Use separate noise multiplier")                ad_use_clip_skip = gr.Checkbox(label="Use separate CLIP skip")            with gr.Row():                ad_noise_multiplier = gr.Slider(label="Noise multiplier for img2img", minimum=0.5, maximum=1.5, step=0.01, value=1)                ad_clip_skip = gr.Slider(label="ADetailer CLIP skip", minimum=1, maximum=12, step=1, value=1)            ad_restore_face = gr.Checkbox(label="Restore faces after ADetailer")        if "sd-webui-controlnet" in extensions:            with gr.Tab("ControlNet"):                with gr.Row():                    ad_cn_models = ["None", "Passthrough", "control_v11f1p_sd15_depth [1a8eb83c]", "control_v11p_sd15_inpaint [dfe64acb]", "control_v11p_sd15_lineart [2c3004a6]", "control_v11p_sd15_openpose [52e0ea54]", "control_v11p_sd15_scribble [46a6fcd7]", "control_v11p_sd15s2_lineart_anime [19a26aa8]"]                    ad_controlnet_model = gr.Dropdown(ad_cn_models, label="ControlNet model", value="None")                    ad_controlnet_module = gr.Dropdown(["None"], label="ControlNet module", value="None", visible=False)                    ad_controlnet_model.change(fn= ad_update_cn_module_choices, inputs=ad_controlnet_model, outputs=ad_controlnet_module)                with gr.Row():                    ad_controlnet_weight = gr.Slider(label="Control Weight", minimum=0, maximum=1, step=0.01, value=1)                    ad_controlnet_guidance_start = gr.Slider(label="Starting Control Step", minimum=0, maximum=1, step=0.01, value=0)                    ad_controlnet_guidance_end = gr.Slider(label="Ending Control Step", minimum=0, maximum=1, step=0.01, value=1)        if "sd-webui-controlnet" in extensions:            ad_inputs = [ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face, ad_controlnet_model, ad_controlnet_module, ad_controlnet_weight, ad_controlnet_guidance_start, ad_controlnet_guidance_end]        else:            ad_inputs = [ad_gen_type, ad_num, enable_ad, ad_model, ad_prompt, ad_negative_prompt, ad_confidence, ad_mask_min_ratio, ad_mask_k_largest, ad_mask_max_ratio, ad_x_offset, ad_y_offset, ad_dilate_erode, ad_mask_merge_invert, ad_mask_blur, ad_denoising_strength, ad_inpaint_only_masked, ad_use_inpaint_width_height, ad_inpaint_only_masked_padding, ad_inpaint_width, ad_inpaint_height, ad_use_steps, ad_use_cfg_scale, ad_steps, ad_cfg_scale, ad_use_checkpoint, ad_use_vae, ad_checkpoint, ad_vae, ad_use_sampler, ad_sampler, ad_scheduler, ad_use_noise_multiplier, ad_use_clip_skip, ad_noise_multiplier, ad_clip_skip, ad_restore_face]        for gr_block in ad_inputs:            if type(gr_block) is gr.components.slider.Slider:                gr_block.release(fn=ad_update_args, inputs=ad_inputs, outputs=None)            else:                gr_block.change(fn=ad_update_args, inputs=ad_inputs, outputs=None)    return demodef add_controlnet(payload, gen_type):    global cn_args    args = cn_args[gen_type]    args = dict(sorted(args.items(), key=lambda x: x[0]))    payload["alwayson_scripts"]["controlnet"] = {"args": []}    if args == {}:        return payload    for i in args:        payload["alwayson_scripts"]["controlnet"]["args"].append(args[i])    return payloaddef cn_preprocess(cn_module, cn_input_image):    if cn_input_image is None:        return None    cn_input_image = pil_to_base64(cn_input_image)    payload = {        "controlnet_module": cn_module,        "controlnet_input_images": [cn_input_image]    }    response = requests.post(url=f"{url}/controlnet/detect", json=payload)    images_base64 = response.json()["images"][0]    image_pil = base64_to_pil(images_base64)    if save_images == "Yes":        save_image(image_pil, "ControlNet", "detect")    return image_pildef cn_update_args(*args):    cn_gen_type, cn_num, enable_cn, enable_low_vram, enable_pixel_perfect, cn_module, cn_model, cn_input_image, cn_mask, cn_weight, cn_guidance_start, cn_guidance_end, cn_resolution, cn_control_mode, cn_resize_mode = args    global cn_args    if not cn_input_image is None:        cn_input_image = pil_to_base64(cn_input_image)    if not cn_mask is None:        cn_mask = pil_to_base64(cn_mask)    args = {        "input_image": cn_input_image,        "module": cn_module,        "model": cn_model,        "low_vram": enable_low_vram,        "pixel_perfect": enable_pixel_perfect,        "mask": cn_mask,        "weight": cn_weight,        "guidance_start": cn_guidance_start,        "guidance_end": cn_guidance_end,        "processor_res": cn_resolution,        "control_mode": cn_control_mode,        "resize_mode": cn_resize_mode    }    if enable_cn == True:        cn_args[cn_gen_type][cn_num] = args    else:        del cn_args[cn_gen_type][cn_num]def cn_update_choices(cn_type):    module_list = cn_types_list[cn_type]["module_list"]    model_list = cn_types_list[cn_type]["model_list"]    default_option = cn_types_list[cn_type]["default_option"]    default_model = cn_types_list[cn_type]["default_model"]    return gr.update(choices=module_list, value=default_option), gr.update(choices=model_list, value=default_model)def cn_blocks(i, gen_type):    with gr.Blocks() as demo:        with gr.Row():            cn_gen_type = gr.Textbox(visible=False, value=gen_type)            cn_num = gr.Textbox(visible=False, value=i)            enable_cn = gr.Checkbox(label="Enable")            enable_low_vram = gr.Checkbox(label="Low VRAM")            enable_pixel_perfect = gr.Checkbox(label="Pixel Perfect")            enable_mask_upload = gr.Checkbox(label="Effective Region Mask")        with gr.Row():            cn_type = gr.Dropdown(cn_types, label="ControlNet type", value=cn_default_type)            cn_btn = gr.Button("Preprocess | 预处理", elem_id="button")        with gr.Row():            cn_module = gr.Dropdown(cn_module_list, label="ControlNet module", value=cn_default_option)            cn_model = gr.Dropdown(cn_model_list, label="ControlNet model", value=cn_default_model)        with gr.Row():            cn_input_image = gr.Image(type="pil")            cn_detect_image = gr.Image(label="Preprocessor Preview")            cn_mask = gr.Image(label="Effective Region Mask", interactive=True, visible=False)        with gr.Row():            cn_weight = gr.Slider(label="Control Weight", minimum=0, maximum=2, step=0.05, value=1)            cn_guidance_start = gr.Slider(label="Starting Control Step", minimum=0, maximum=1, step=0.01, value=0)            cn_guidance_end = gr.Slider(label="Ending Control Step", minimum=0, maximum=1, step=0.01, value=1)        cn_resolution = gr.Slider(label="Resolution", minimum=64, maximum=2048, step=default["size_step"], value=512)        cn_control_mode = gr.Radio(["Balanced", "My prompt is more important", "ControlNet is more important"], label="Control Mode", value="Balanced")        cn_resize_mode = gr.Radio(["Just Resize", "Crop and Resize", "Resize and Fill"], label="Resize Mode", value="Crop and Resize")        enable_mask_upload.change(fn=gr_update_visible, inputs=enable_mask_upload, outputs=cn_mask)        cn_type.change(fn=cn_update_choices, inputs=cn_type, outputs=[cn_module, cn_model])        cn_btn.click(fn=cn_preprocess, inputs=[cn_module, cn_input_image], outputs=cn_detect_image)        cn_inputs = [cn_gen_type, cn_num, enable_cn, enable_low_vram, enable_pixel_perfect, cn_module, cn_model, cn_input_image, cn_mask, cn_weight, cn_guidance_start, cn_guidance_end, cn_resolution, cn_control_mode, cn_resize_mode]        for gr_block in cn_inputs:            if type(gr_block) is gr.components.slider.Slider:                gr_block.release(fn=cn_update_args, inputs=cn_inputs, outputs=None)            else:                gr_block.change(fn=cn_update_args, inputs=cn_inputs, outputs=None)    return demodef generate(input_image, sd_model, sd_vae, sampler_name, scheduler, clip_skip, steps, width, batch_size, height, batch_count, cfg_scale, randn_source, seed, denoising_strength, prompt, negative_prompt, progress=gr.Progress()):    global interrupt, xyz_args    interrupt = False    if denoising_strength >= 0:        gen_type = "img2img"        if input_image is None:            return None, None, None    else:        gen_type = "txt2img"    progress(0, desc=f"Loading {sd_model}")    payload = {        "sd_model_checkpoint": sd_models_list[sd_model],        "sd_vae": sd_vae,        "CLIP_stop_at_last_layers": clip_skip,        "randn_source": randn_source    }    requests.post(url=f"{url}/sdapi/v1/options", json=payload)    if interrupt == True:            return None, None, None    progress(0, desc="Processing...")    images = []    images_info = []    if not input_image is None:        input_image = pil_to_base64(input_image)    for i in range(batch_count):        payload = {            "prompt": prompt,            "negative_prompt": negative_prompt,            "batch_size": batch_size,            "seed": seed,            "sampler_name": sampler_name,            "scheduler": scheduler,            "steps": steps,            "cfg_scale": cfg_scale,            "width": width,            "height": height,            "init_images": [input_image],            "denoising_strength": denoising_strength,            "alwayson_scripts": {}        }        if "adetailer" in extensions:            payload = add_adetailer(payload, gen_type)        if "sd-webui-controlnet" in extensions:            payload = add_controlnet(payload, gen_type)        payload = add_xyz_plot(payload, gen_type)        response = requests.post(url=f"{url}/sdapi/v1/{gen_type}", json=payload)        images_base64 = response.json()["images"]        for j in range(len(images_base64)):            image_pil = base64_to_pil(images_base64[j])            images.append(image_pil)            image_info = get_png_info(image_pil)            images_info.append(image_info)            if image_info == "None":                if save_images == "Yes":                    if gen_type in xyz_args:                        save_image(image_pil, "XYZ_Plot", "grid")                    else:                        save_image(image_pil, "ControlNet", "detect")            else:                seed = re.findall("Seed: [0-9]+", image_info)[0].split(": ")[-1]                if save_images == "Yes":                    save_image(image_pil, sd_model, seed)        seed = int(seed) + 1        progress((i+1)/batch_count, desc=f"Batch count: {(i+1)}/{batch_count}")        if interrupt == True:            return images, images_info, datetime.datetime.now()    return images, images_info, datetime.datetime.now()def gen_clear_geninfo():    return Nonedef gen_update_geninfo(images_info):    if images_info == [] or images_info is None:        return None    return images_info[0]def gen_update_selected_geninfo(images_info, evt: gr.SelectData):    return images_info[evt.index]def gen_blocks(gen_type):    with gr.Blocks() as demo:        with gr.Row():            with gr.Column():                prompt = gr.Textbox(placeholder="Prompt", show_label=False, value=default["prompt"], lines=3)                negative_prompt = gr.Textbox(placeholder="Negative prompt", show_label=False, value=default["negative_prompt"], lines=3)                if gen_type == "txt2img":                    input_image = gr.Image(visible=False)                else:                    input_image = gr.Image(type="pil")                with gr.Tab("Generation"):                    with gr.Row():                        sd_model = gr.Dropdown(sd_models, label="SD Model", value=sd_models[0])                        sd_vae = gr.Dropdown(sd_vaes, label="SD VAE", value=sd_vaes[0])                        clip_skip = gr.Slider(minimum=1, maximum=12, step=1, label="Clip skip", value=default["clip_skip"])                    with gr.Row():                        sampler_name = gr.Dropdown(samplers, label="Sampling method", value=samplers[0])                        scheduler = gr.Dropdown(schedulers, label="Schedule type", value=schedulers[0])                        steps = gr.Slider(minimum=1, maximum=100, step=1, label="Sampling steps", value=default["steps"])                    with gr.Row():                        width = gr.Slider(minimum=64, maximum=2048, step=default["size_step"], label="Width", value=default["width"])                        batch_size = gr.Slider(minimum=1, maximum=8, step=1, label="Batch size", value=1)                    with gr.Row():                        height = gr.Slider(minimum=64, maximum=2048, step=default["size_step"], label="Height", value=default["height"])                        batch_count = gr.Slider(minimum=1, maximum=100, step=1, label="Batch count", value=1)                    with gr.Row():                        cfg_scale = gr.Slider(minimum=1, maximum=30, step=0.5, label="CFG Scale", value=default["cfg"])                        if gen_type == "txt2img":                            denoising_strength = gr.Slider(minimum=-1, maximum=1, step=1, value=-1, visible=False)                        else:                            denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Denoising strength", value=0.7)                    with gr.Row():                        randn_source = gr.Dropdown(["CPU", "GPU"], label="RNG", value="CPU")                        seed = gr.Textbox(label="Seed", value=-1)                if "adetailer" in extensions:                    with gr.Tab("ADetailer"):                        if gen_type == "img2img":                            with gr.Row():                                ad_skip_img2img = gr.Checkbox(label="Skip img2img", visible=True)                                ad_skip_img2img.change(fn=ad_update_skip_img2img, inputs=ad_skip_img2img, outputs=None)                        for i in range(default["ad_nums"]):                            with gr.Tab(f"ADetailer {ordinal(i + 1)}"): ad_blocks(i, gen_type)                if "sd-webui-controlnet" in extensions:                    with gr.Tab("ControlNet"):                        for i in range(default["cn_nums"]):                            with gr.Tab(f"ControlNet Unit {i}"): cn_blocks(i, gen_type)                if not loras == [] or not embeddings == []:                    with gr.Tab("Extra Networks"):                        if not loras == []:                            lora = gr.Dropdown(loras, label="Lora", multiselect=True, interactive=True)                            lora.change(fn=add_lora, inputs=[prompt, lora], outputs=prompt)                        if not embeddings == []:                            embedding = gr.Dropdown(embeddings, label="Embedding", multiselect=True, interactive=True)                            embedding.change(fn=add_embedding, inputs=[negative_prompt, embedding], outputs=negative_prompt)                with gr.Tab("X/Y/Z plot"): xyz_blocks(gen_type)            with gr.Column():                with gr.Row():                    btn = gr.Button("Generate | 生成", elem_id="button")                    btn2 = gr.Button("Interrupt | 终止")                gallery = gr.Gallery(preview=True, height=default["gallery_height"])                image_geninfo = gr.Markdown()                images_geninfo = gr.State()                update_geninfo = gr.Textbox(visible=False)            gen_inputs = [input_image, sd_model, sd_vae, sampler_name, scheduler, clip_skip, steps, width, batch_size, height, batch_count, cfg_scale, randn_source, seed, denoising_strength, prompt, negative_prompt]            btn.click(fn=gen_clear_geninfo, inputs=None, outputs=image_geninfo)            btn.click(fn=generate, inputs=gen_inputs, outputs=[gallery, images_geninfo, update_geninfo])            btn2.click(fn=post_interrupt, inputs=None, outputs=None)            gallery.select(fn=gen_update_selected_geninfo, inputs=images_geninfo, outputs=image_geninfo)            update_geninfo.change(fn=gen_update_geninfo, inputs=images_geninfo, outputs=image_geninfo)    return demodef extras(input_image, upscaler_1, upscaler_2, upscaling_resize, extras_upscaler_2_visibility, enable_gfpgan, gfpgan_visibility, enable_codeformer, codeformer_visibility, codeformer_weight):    if input_image is None:        return None    input_image = pil_to_base64(input_image)    if enable_gfpgan == False:        gfpgan_visibility = 0    if enable_codeformer == False:        codeformer_visibility = 0    payload = {        "gfpgan_visibility": gfpgan_visibility,        "codeformer_visibility": codeformer_visibility,        "codeformer_weight": codeformer_weight,        "upscaling_resize": upscaling_resize,        "upscaler_1": upscaler_1,        "upscaler_2": upscaler_2,        "extras_upscaler_2_visibility": extras_upscaler_2_visibility,        "image": input_image    }    response = requests.post(url=f"{url}/sdapi/v1/extra-single-image", json=payload)    images_base64 = response.json()["image"]    image_pil = base64_to_pil(images_base64)    if save_images == "Yes":        save_image(image_pil, "Extras", "image")    return image_pildef extras_blocks():    with gr.Blocks() as demo:        with gr.Row():            with gr.Column():                input_image = gr.Image(type="pil")                with gr.Row():                    upscaler_1 = gr.Dropdown(upscalers, label="Upscaler 1", value="R-ESRGAN 4x+")                    upscaler_2 = gr.Dropdown(upscalers, label="Upscaler 2", value="None")                with gr.Row():                    upscaling_resize = gr.Slider(minimum=1, maximum=8, step=0.05, label="Scale by", value=4)                    extras_upscaler_2_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="Upscaler 2 visibility", value=0)                enable_gfpgan = gr.Checkbox(label="Enable GFPGAN")                gfpgan_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="GFPGAN Visibility", value=1)                enable_codeformer = gr.Checkbox(label="Enable CodeFormer")                codeformer_visibility = gr.Slider(minimum=0, maximum=1, step=0.001, label="CodeFormer Visibility", value=1)                codeformer_weight = gr.Slider(minimum=0, maximum=1, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0)            with gr.Column():                with gr.Row():                    btn = gr.Button("Generate | 生成", elem_id="button")                    btn2 = gr.Button("Interrupt | 终止")                extra_image = gr.Image(label="Extras image")            btn.click(fn=extras, inputs=[input_image, upscaler_1, upscaler_2, upscaling_resize, extras_upscaler_2_visibility, enable_gfpgan, gfpgan_visibility, enable_codeformer, codeformer_visibility, codeformer_weight], outputs=extra_image)            btn2.click(fn=post_interrupt, inputs=None, outputs=None)    return demodef get_png_info(image_pil):    image_info=[]    if image_pil is None:        return None    for key, value in image_pil.info.items():        image_info.append(value)    if not image_info == []:        image_info = image_info[0]        image_info = re.sub(r"<", "\<", image_info)        image_info = re.sub(r">", "\>", image_info)        image_info = re.sub(r"\n", "<br>", image_info)    else:        image_info = "None"    return image_infodef png_info_blocks():    with gr.Blocks() as demo:        with gr.Row():            with gr.Column():                input_image = gr.Image(value=None, type="pil")            with gr.Column():                png_info = gr.Markdown()            input_image.change(fn=get_png_info, inputs=input_image, outputs=png_info)    return demowith gr.Blocks(css="#button {background: #FFE1C0; color: #FF453A} .block.padded:not(.gradio-accordion) {padding: 0 !important;} div.form {border-width: 0; box-shadow: none; background: white; gap: 0.5em;}") as demo:    with gr.Tab("txt2img"): gen_blocks("txt2img")    with gr.Tab("img2img"): gen_blocks("img2img")    with gr.Tab("Extras"): extras_blocks()    with gr.Tab("PNG Info"): png_info_blocks()demo.queue(concurrency_count=100).launch(inbrowser=True)


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/157514.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1