当前位置:首页 » 《随便一记》 » 正文

AI大模型应用开发:手把手教你部署并使用清华智谱GLM大模型

23 人参与  2024年10月29日 19:20  分类 : 《随便一记》  评论

点击全文阅读


部署一个自己的大模型,没事的时候玩两下,这可能是很多技术同学想做但又迟迟没下手的事情,没下手的原因很可能是成本太高,近万元的RTX3090显卡,想想都肉疼,又或者官方的部署说明过于简单,安装的时候总是遇到各种奇奇怪怪的问题,难以解决。本文就来分享下我的安装部署经验,包括本地和租用云服务器的方式,以及如何通过API调用大模型开发自己的AI应用,希望能解决一些下不去手的问题。

ChatGLM3-6B

本次部署使用的的大模型是ChatGLM3-6B,这个大模型是清华智谱研发并开源的高性能中英双语对话语言模型,它凭借创新的GLM(Gated Linear Units with Memory)架构及庞大的60亿参数量,在对话理解与生成能力上表现卓越。

ChatGLM3-6B不仅能够处理复杂的跨语言对话场景,实现流畅的人机互动,还具备函数调用以及代码解释执行的能力。这意味着开发者可以通过API调用,让模型执行特定任务或编写、解析简单的代码片段,从而将应用拓展到更为广泛的开发和智能辅助领域。

ChatGLM3-6B还允许开发者对预训练模型进行定制化微调,让它在某个领域工作的更好,比如代码编写、电商文案编写等。另外开发者还能对模型进行量化,使用较低的数字精度来表示权重,这使得模型可以运行在消费级显卡甚至CPU上。

ChatGLM3-6B的仓库地址:github.com/THUDM/ChatG…

效果展示

先看两个比较正常的效果:

能正常调用天气工具,记得上下文,这里点个赞!

再画一个满满的爱心,画的也不错。

再看两个跑疯的效果:

我问你天气,你不好好回答就算了,还反过来问我有啥意义,太爱管闲事。

看来ChatGLM对正六边形的感知有误啊,确实它还不能识别这个图像。

虽然有时不那么如人意,不过整体用起来还是有很多可圈可点的地方,就是提示词要好好写一下,不能太凑合。

云环境部署

这里以AutoDL为例(www.autodl.com),AutoDL上的GPU实例价格比较公道,ChatGLM3-6B需要13G以上的显存,可以选择RTX4090、RTX3090、RTX3080*2、A5000等GPU规格。

这里提供两种方法,一是直接使用我已经创建好的镜像,二是自己从基础镜像一步步安装。

使用现有镜像

创建容器实例时镜像选择“社区镜像”,输入 yinghuoai ,选择 ChatGLM3 的最新镜像。

容器实例开机成功后,点击对应实例的 JupyterLab 就能开始使用了。

这个镜像包含三个Notebook,方便我们启动WebUI服务器和API服务器,并进行相关的测试。我将在下文介绍具体的使用方法。

自己手动安装

创建容器实例时我们选择一个基础镜像 Miniconda -> conda3 -> Python 3.10(ubuntu22.04) -> Cuda11.8。

容器实例开机完毕后,点击对应实例的 JupyterLab 进入一个Web管理界面。

在“启动页”这里点击“终端”,进入一个命令窗口。

首先需要设置下网络,用以加速访问Github。这是AutoDL实例才能使用的,本地无效。

source /etc/network_turbo

然后需要把代码下载到本地,使用Git即可。

git clone https://github.com/THUDM/ChatGLM3cd ChatGLM3

然后创建一个Python的虚拟环境,这样方便隔离不同项目对Python环境的不同要求。这里使用 source activate 激活虚拟环境,很多文章中是 conda activate,这和conda的版本有关系,AutoDL中的版本不支持 conda activate。

conda create -n chatglm3-6b python=3.10.8 source activate chatglm3-6b

然后使用 uv 安装依赖的程序包。为什么用uv?因为requirements中很多包的版本要求都是 >=,直接使用pip的时候会安装最新的版本,最新的版本往往和开发者使用的版本不同,这会导致一些兼容问题,所以最好就是 == 的那个版本,这个版本能用,而且一般就是开发者使用的版本。

pip install uvuv pip install --resolution=lowest-direct -r requirements.txt

然后我们还要下载大模型文件,这里从AutoDL的模型库中下载,速度比较快。下边的模型文件是别人分享出来的,我们使用AutoDL提供的一个下载工具进行下载。下载目标目录是/root/autodl-tmp,会自动在这个目录中创建一个名为 chatglm3-6b 的子目录,并保存这些文件。

pip install codewithgpucg down xxxiu/chatglm3-6b/config.json -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/configuration_chatglm.py -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/gitattributes -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model.safetensors.index.json -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/MODEL_LICENSE -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00001-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00002-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00003-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00004-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00005-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00006-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/model-00007-of-00007.safetensors -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/modeling_chatglm.py -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/pytorch_model.bin.index.json -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/quantization.py -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/README.md -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/tokenization_chatglm.py -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/tokenizer.model -t /root/autodl-tmpcg down xxxiu/chatglm3-6b/tokenizer_config.json -t /root/autodl-tmp

最后我们做一个简单的测试,找到这个文件:ChatGLM3/basic_demo/cli_demo.py,修改其中的模型路径为上边的下载路径:/root/autodl-tmp/chatglm3-6b

在终端执行命令:python basic_demo/cli_demo.py,然后我们就可以在终端与大模型进行交流了。

本地环境安装

注意需要13G显存以上的Nvidia显卡,否则跑不起来。这里以Windows系统为例。

首先本地要有一个Python的运行环境,建议使用 Anaconda,可以把它理解为一个Python集成环境,通过它我们可以方便的开发Python程序。Anaconda的官方下载地址是:www.anaconda.com/download

这个安装文件比较大,下载时间取决于你的网速,下载成功后按照提示一步步安装就行了。

安装成功后,启动“Anaconda Navigator”,在其中点击“Environments”->“base(root)” ->“Open Terminal”,打开终端。

这是一个命令行工具,我们将主要在这里边通过执行命令安装ChatGLM3-6B。

然后我们还需要从Github上下载代码到本地,推荐使用Git,没有Git的同学可以先去安装一个:git-scm.com/。当然直接从Github下载程序包到本地也可以

这里我将程序放到了C盘下的ChatGLM3目录。

cd C:\git clone https://github.com/THUDM/ChatGLM3cd ChatGLM3

使用下边的命令创建一个Python的虚拟环境并激活,这样方便隔离不同项目对Python环境的不同要求。

conda create -n chatglm3-6b python=3.10.8 conda activate chatglm3-6b

然后还需要把相关模型文件下载到本地,为了防止下载方式失效,这里提供多种方法:

(1)下载AutoDL用户分享的模型,执行下边的命令,它会下载到 C:\ChatGLM3\THUDM,速度还可以。

pip install requestspip install codewithgpucg down xxxiu/chatglm3-6b/config.json -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/configuration_chatglm.py -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/gitattributes -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model.safetensors.index.json -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/MODEL_LICENSE -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00001-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00002-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00003-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00004-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00005-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00006-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/model-00007-of-00007.safetensors -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/modeling_chatglm.py -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/pytorch_model.bin.index.json -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/quantization.py -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/README.md -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/tokenization_chatglm.py -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/tokenizer.model -t C:\ChatGLM3\THUDMcg down xxxiu/chatglm3-6b/tokenizer_config.json -t C:\ChatGLM3\THUDM

(2)从HuggingFace的镜像下载,地址是:hf-mirror.com/THUDM/chatg…

(3)给公众号“萤火遛AI”发消息 ChatGLM3 获取最新下载方式。

最后我们做一个简单的测试,执行命令:python basic_demo/cli_demo.py,然后我们就可以在终端与大模型进行交流了。

如果程序出现下边的错误:

RuntimeError: “addmm_impl_cpu_” not implemented for ‘Half’

首先确定你的电脑是安装了Nvida显卡的,然后使用下边的命令补充安装相关的pytorch-cuda包。

conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidiapip install chardet

使用WebUI体验

ChatGLM提供了一个Web界面,用户可以直接在这个页面上聊天、使用插件,以及执行Python代码,就像使用大多数的大语言模型一样。额外的用户还可以配置一些参数,比如一次生成Token的数量、系统提示词、采样的随机性控制等。

启动WebUI服务

首先修改程序中的模型目录,在下载程序中找到文件 composite_demo/client.py,修改 MODEL_PATH 为你的模型存放地址。

然后进入 ChatGLM3-6B 程序的根目录(根据自己的部署来),激活Python虚拟环境:

cd /root/ChatGLM3conda activate chatglm3-6b# conda如果不行就使用 source activate chatglm3-6b

因为需要执行代码,我们还要安装 Jupyter 内核:

ipython kernel install --name chatglm3-6b --user

并修改文件 composite_demo/demo_ci.py 中的 IPYKERNEL 的值为设置的值。

最后启动API服务器:streamlit run composite_demo/main.py 可知这个WebUI使用的是streamlit框架。

如果是在个人电脑上安装的,点击这里的连接就可以在浏览器访问了。

如果是在AutoDL上的实例,还需要再折腾一下。因为这个WebUI使用了WebSocket,但是AutoDL开放的外网端口不支持WebSocket。此时可以通过SSH隧道的方式来打通本地与AutoDL实例的网络。

我们需要类似下边这样的一条指令:

sudo ssh -CNg -L 8501:127.0.0.1:8501 root@connect.westb.seetacloud.com -p 12357

其中的 connect.westb.seetacloud.com 和 10757 需要替换成你自己实例的,在实例列表中复制登录指令。

然后把它随便粘贴到一个地方,就可以得到所需的地址和端口号了:

在个人电脑的终端或者命令行工具执行上边写好的指令,首先需要统一添加主机(输入 yes),然后需要输入主机登录密码,还是从AutoDL的实例列表拷贝。

登录成功后,这个界面会挂起,不会输出任何内容。此时我们在浏览器地址栏输入 http://127.0.0.1:8501 就可以访问了。

使用WebUI

这个WebUI左边是参数区域,右边是使用区域,有三种使用方式:Chat、Tool和Code Interpreter,分别就是聊天、工具或插件、代码解释器。相关参数我在之前的文章中介绍过,可以参考下:juejin.cn/post/732344…

聊天就不用说了,我们看下工具或插件的使用。它会完整的展现出来插件的使用过程,用户询问问题,触发大模型调用插件,展现插件返回的内容,大模型整理插件返回的内容并输出给用户。中间的两个过程这里只是为了方便用户了解原理,其实可以在展现大模型返回值时将它们过滤掉。具体的可以修改这个文件中的第144行-198行:composite_demo/demo_tool.py 。

实例代码中提供了两个工具,一个是获取实时天气,另一个是生成随机数,用户还可以修改代码增加自己的工具插件,在 composite_demo/tool_registry.py 这个文件中。

只需要使用 @register_tool 装饰函数即可完成注册。对于工具声明,函数名称即为工具的名称,函数 docstring 即为工具的说明;对于工具的参数,使用 Annotated[typ: type, description: str, required: bool] 标注参数的类型、描述和是否必须。例如,get_weather 工具的注册如下:

@register_tooldef get_weather(    city_name: Annotated[str, 'The name of the city to be queried', True],) -> str:    """    Get the weather for `city_name` in the following week    """    ...

再看看代码解释器的效果,模型会根据对任务完成情况的理解自动地连续执行多个代码块,直到任务完成。比如让它用Python画一个爱心。

如果代码执行有错误,模型会自动修正错误,然后继续生成,直到能够正常执行成功。这个能力其实是通过系统提示词和observation角色实现的。

在 composite_demo/demo_ci.py 中可以看到提示词:

当程序执行出错的时候,程序会通过observation角色把错误再发给ChatGLM进行分析,然后ChatGLM会修改代码,再重新输出到程序中,最后使用 Jupyter 内核执行代码。

使用API开发应用

使用大模型API,我们可以完全自定义自己的交互页面,增加很多有趣的功能,比如提供联网能力。

这里我们使用的是ChatGLM3-6B自带的一个API示例程序,这个程序中有一个参考OpenAI接口规范开发的API服务,我们可以直接使用OpenAI的客户端进行调用,这避免了很多学习成本,降低了使用难度。

启动API服务

首先修改程序中的模型目录,在下载程序中找到文件 openai_api_demo/api_server.py,修改 MODEL_PATH 为你的模型存放地址。

然后进入 ChatGLM3-6B 程序的根目录(根据自己的部署来),激活Python虚拟环境:

cd C:\ChatGLM3conda activate chatglm3-6b# conda如果不行就使用 source activate chatglm3-6b

最后启动API服务器:python openai_api_demo/api_server.py

看到 running on http://0.0.0.0 的提示信息就代表启动成功了。

注意这里的端口号,如果你是在AutoDL部署的程序,需要将端口号修改为6006,然后才能通过AutoDL提供的“自定义服务”在外网访问,端口号在openai_api_demo/api_server.py 文件的最末尾。

修改后重启API服务,然后在AutoDL的容器实例列表中点击“自定义服务”,即可获取外网访问地址。

调用API服务

这里还是以Python为例,首先使用pip安装OpenAI的SDK。

pip install --upgrade openai httpx[socks]

我准备了两个简单的应用示例,一个是简单的聊天程序,另一个是在大模型中使用插件的方法。

先看聊天程序,这里让它扮演一个数学老师进行出题,之前我写过一篇文章介绍相关参数的含义,这里就不罗嗦了,需要的请看:juejin.cn/post/732344…

# 一个简单的聊天程序from openai import OpenAIclient = OpenAI(api_key='not-need-key',base_url="http://127.0.0.1:6006/v1")stream = client.chat.completions.create(    messages=[{        "role": "system", "content": "你是一名数学老师,从事小学数学教育30年,精通设计各种数学考试题"    },{        "role": "user", "content": "请给我出10道一年级的计算题。"    }],    model='chatglm3-6b',    max_tokens=1024,    #temperature=0.1,    top_p=0.3,    #frequency_penalty=0.5,    presence_penalty=0.2,    seed=12345,    #stop='30年',    response_format={ "type": "json_object" },    n=1,    stream=True)for chunk in stream:    msg = chunk.choices[0].delta.content    if msg is not None:        print(msg, end='')

下边是程序的执行结果,大模型理解的很正确,并生成了合理的输出。

再看大模型中使用插件的方法,这里让ChatGLM根据用户要求调用天气函数查询实时天气,注意ChatGLM3-6B调用函数的方法没有支持最新的OpenAI API规范,目前只实现了一半,能通过tools传入函数,但是响应消息中命中函数还是使用的 function_call,而不是最新的 tool_calls。相关参数我也在别的文章中做过详细介绍,请参考:juejin.cn/post/732536…

from openai import OpenAIimport jsonimport requestsimport time# 获取天气的方法def get_city_weather(param):    city = json.loads(param)["city"]    r = requests.get(f"https://wttr.in/{city}?format=j1")    data = r.json()["current_condition"]    #print(json.dumps(data))    temperature = data[0]['temp_C']    humidity= data[0]['humidity']    text = data[0]['weatherDesc'][0]["value"]    return "当前天气:"+text+",温度:"+temperature+ "℃,湿度:"+humidity+"%"# 天气插件的定义weather_tool = {    "type": "function",    "function": {        "name": "get_city_weather",        "description": "获取某个城市的天气",        "parameters": {            "type": "object",            "properties": {                "city": {                    "type": "string",                    "description": "城市名称",                },            },            "required": ["city"],        },    }}# 创建OpenAI客户端,获取API Key请看文章最后client = OpenAI(api_key='no-need-key', base_url="http://127.0.0.1:6006/v1")# 定义请求GPT的通用方法def create_completion():    return client.chat.completions.create(        messages=messages,        model='chatglm3-6b',        stream=False,        tool_choice="auto",        tools=[weather_tool]    )# 我的三个问题questions = ["请问上海天气怎么样?","请问广州天气怎么样?","成都呢?","北京呢?"]# 聊天上下文,初始为空messages=[]print("---GLM天气插件演示--- ")# 遍历询问我的问题for question in questions:      # 将问题添加到上下文中    messages.append({        "role": "user",        "content": question,    })    print("路人甲: ",question)    # 请求GPT,并拿到响应    response_message = create_completion().choices[0].message    # 把响应添加到聊天上下文中    messages.append(response_message)    #print(response_message)    # 根据插件命中情况,执行插件逻辑    if response_message.function_call is not None:        function_call = response_message.function_call        # 追加插件生成的天气内容到聊天上下文        weather_info = get_city_weather(function_call.arguments)        #print(weather_info)        messages.append({            "role": "function",            "content": weather_info,            "name": function_call.name        })        # 再次发起聊天        second_chat_completion = create_completion()        gpt_output = second_chat_completion.choices[0].message.content        # 打印GPT合成的天气内容        print("GLM: ",gpt_output)        time.sleep(0.2)        # 将GPT的回答也追加到上下文中        messages.append({            "role": "assistant",            "content": gpt_output,        })    else:        print("GLM: ",response_message.content)

执行效果如下:


以上就是本文的主要内容,有兴趣的快去体验下吧。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, ?有需要的小伙伴,可以 扫描下方二维码领取?↓↓↓

?CSDN大礼包?:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)?

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

目标:了解AI大模型的基本概念、发展历程和核心原理。

内容

L1.1 人工智能简述与大模型起源L1.2 大模型与通用人工智能L1.3 GPT模型的发展历程L1.4 模型工程L1.4.1 知识大模型L1.4.2 生产大模型L1.4.3 模型工程方法论L1.4.4 模型工程实践L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

内容

L2.1 API接口L2.1.1 OpenAI API接口L2.1.2 Python接口接入L2.1.3 BOT工具类框架L2.1.4 代码示例L2.2 Prompt框架L2.3 流水线工程L2.4 总结与展望

阶段3:AI大模型应用架构实践

目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

内容

L3.1 Agent模型框架L3.2 MetaGPTL3.3 ChatGLML3.4 LLAMAL3.5 其他大模型介绍

阶段4:AI大模型私有化部署

目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

内容

L4.1 模型私有化部署概述L4.2 模型私有化部署的关键技术L4.3 模型私有化部署的实施步骤L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, ?有需要的小伙伴,可以 扫描下方二维码领取?↓↓↓

?CSDN大礼包?:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)?


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/179716.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1