当前位置:首页 » 《随便一记》 » 正文

python:VOC格式数据集转换为YOLO数据集格式

20 人参与  2024年11月10日 18:42  分类 : 《随便一记》  评论

点击全文阅读


作者:CSDN @ _养乐多_

本文将介绍如何将目标检测中常用的VOC格式数据集转换为YOLO数据集,并进行数据集比例划分,从而方便的进行YOLO目标检测。

如果不想分两步,可以直接看第三节代码。


文章目录

一、将VOC格式数据集转换为YOLO格式数据集二、YOLO格式数据集划分(训练、验证、测试)2.1 版本12.2 版本2三、一步到位


一、将VOC格式数据集转换为YOLO格式数据集

执行以下脚本将VOC格式数据集转换为YOLO格式数据集。
但是需要注意的是:

转换之后的数据集只有Images和labels两个文件。还需要执行第二节中的脚本进行数据集划分,将总的数据集划分为训练、验证、测试数据集;使用的话,需要修改 class_mapping 中类别名和对应标签,还有VOC数据集路径、YOLO数据集路径。
import osimport shutilimport xml.etree.ElementTree as ET# VOC格式数据集路径voc_data_path = 'E:\\DataSet\\helmet-VOC'voc_annotations_path = os.path.join(voc_data_path, 'Annotations')voc_images_path = os.path.join(voc_data_path, 'JPEGImages')# YOLO格式数据集保存路径yolo_data_path = 'E:\\DataSet\\helmet-YOLO'yolo_images_path = os.path.join(yolo_data_path, 'images')yolo_labels_path = os.path.join(yolo_data_path, 'labels')# 创建YOLO格式数据集目录os.makedirs(yolo_images_path, exist_ok=True)os.makedirs(yolo_labels_path, exist_ok=True)# 类别映射 (可以根据自己的数据集进行调整)class_mapping = {    'head': 0,    'helmet': 1,    'person': 2,    # 添加更多类别...}def convert_voc_to_yolo(voc_annotation_file, yolo_label_file):    tree = ET.parse(voc_annotation_file)    root = tree.getroot()    size = root.find('size')    width = float(size.find('width').text)    height = float(size.find('height').text)    with open(yolo_label_file, 'w') as f:        for obj in root.findall('object'):            cls = obj.find('name').text            if cls not in class_mapping:                continue            cls_id = class_mapping[cls]            xmlbox = obj.find('bndbox')            xmin = float(xmlbox.find('xmin').text)            ymin = float(xmlbox.find('ymin').text)            xmax = float(xmlbox.find('xmax').text)            ymax = float(xmlbox.find('ymax').text)            x_center = (xmin + xmax) / 2.0 / width            y_center = (ymin + ymax) / 2.0 / height            w = (xmax - xmin) / width            h = (ymax - ymin) / height            f.write(f"{cls_id} {x_center} {y_center} {w} {h}\n")# 遍历VOC数据集的Annotations目录,进行转换for voc_annotation in os.listdir(voc_annotations_path):    if voc_annotation.endswith('.xml'):        voc_annotation_file = os.path.join(voc_annotations_path, voc_annotation)        image_id = os.path.splitext(voc_annotation)[0]        voc_image_file = os.path.join(voc_images_path, f"{image_id}.jpg")        yolo_label_file = os.path.join(yolo_labels_path, f"{image_id}.txt")        yolo_image_file = os.path.join(yolo_images_path, f"{image_id}.jpg")        convert_voc_to_yolo(voc_annotation_file, yolo_label_file)        if os.path.exists(voc_image_file):            shutil.copy(voc_image_file, yolo_image_file)print("转换完成!")

二、YOLO格式数据集划分(训练、验证、测试)

参考:https://docs.ultralytics.com/datasets/detect/#ultralytics-yolo-format

随机将数据集按照0.7-0.2-0.1比例划分为训练、验证、测试数据集。
注意,修改代码中图片的后缀,如果是.jpg,就把.png修改为.jpg。

最终结果,

在这里插入图片描述

2.1 版本1

用版本1划分就行,不用版本2了。

import osimport shutilimport randomfrom math import floor# 创建输出目录的函数def create_dirs(output_dir):    images_dir = os.path.join(output_dir, 'images')    labels_dir = os.path.join(output_dir, 'labels')    for split in ['train', 'val', 'test']:        os.makedirs(os.path.join(images_dir, split), exist_ok=True)        os.makedirs(os.path.join(labels_dir, split), exist_ok=True)    return images_dir, labels_dir# 获取图片和对应txt标签的列表def get_files(images_path, labels_path):    image_files = [f for f in os.listdir(images_path) if f.endswith(('jpg', 'png', 'jpeg'))]    label_files = [f for f in os.listdir(labels_path) if f.endswith('.txt')]    # 检查图片和标签是否配对    paired_files = []    for image_file in image_files:        base_name = os.path.splitext(image_file)[0]        label_file = base_name + '.txt'        if label_file in label_files:            paired_files.append((image_file, label_file))    return paired_files# 将文件按比例划分并拷贝到相应目录def split_and_copy(paired_files, images_path, labels_path, images_dir, labels_dir, train_ratio, val_ratio):    random.shuffle(paired_files)  # 随机打乱    total_files = len(paired_files)    train_count = floor(total_files * train_ratio)    val_count = floor(total_files * val_ratio)    test_count = total_files - train_count - val_count    splits = {        'train': paired_files[:train_count],        'val': paired_files[train_count:train_count + val_count],        'test': paired_files[train_count + val_count:]    }    for split, files in splits.items():        for image_file, label_file in files:            shutil.copy(os.path.join(images_path, image_file), os.path.join(images_dir, split, image_file))            shutil.copy(os.path.join(labels_path, label_file), os.path.join(labels_dir, split, label_file))        print(f'{split}: {len(files)} files')# 主函数def main():    # 写死的路径    images_path = "E:\\DataSet\\LC\\large_coal_blocked_yolo\\totalImages"  # 替换为实际图片文件夹路径    labels_path = "E:\\DataSet\\LC\\large_coal_blocked_yolo\\totalLabels"  # 替换为实际txt文件夹路径    output_dir = "E:\\DataSet\\LC\\large_coal_blocked_yolo\\output"  # 替换为实际输出主目录路径    # 数据划分比例    train_ratio = 0.7    val_ratio = 0.3    test_ratio = 0    # 容差值用于浮点数比较    epsilon = 1e-6    # 确保比例之和等于1    assert abs(train_ratio + val_ratio + test_ratio - 1) < epsilon, "比例之和必须等于1"    # 创建目录    images_dir, labels_dir = create_dirs(output_dir)    # 获取文件列表    paired_files = get_files(images_path, labels_path)    # 进行划分并拷贝    split_and_copy(paired_files, images_path, labels_path, images_dir, labels_dir, train_ratio, val_ratio)# 调用主函数if __name__ == "__main__":    main()

2.2 版本2

import osimport shutilimport random# YOLO格式数据集保存路径yolo_images_path1 = 'E:\\DataSet\\helmet-VOC'yolo_labels_path1 = 'E:\\DataSet\\helmet-YOLO'yolo_data_path = yolo_labels_path1yolo_images_path = os.path.join(yolo_images_path1, 'JPEGImages')yolo_labels_path = os.path.join(yolo_labels_path1, 'labels')# 创建划分后的目录结构train_images_path = os.path.join(yolo_data_path, 'train', 'images')train_labels_path = os.path.join(yolo_data_path, 'train', 'labels')val_images_path = os.path.join(yolo_data_path, 'val', 'images')val_labels_path = os.path.join(yolo_data_path, 'val', 'labels')test_images_path = os.path.join(yolo_data_path, 'test', 'images')test_labels_path = os.path.join(yolo_data_path, 'test', 'labels')os.makedirs(train_images_path, exist_ok=True)os.makedirs(train_labels_path, exist_ok=True)os.makedirs(val_images_path, exist_ok=True)os.makedirs(val_labels_path, exist_ok=True)os.makedirs(test_images_path, exist_ok=True)os.makedirs(test_labels_path, exist_ok=True)# 获取所有图片文件名(不包含扩展名)image_files = [f[:-4] for f in os.listdir(yolo_images_path) if f.endswith('.png')]# 随机打乱文件顺序random.shuffle(image_files)# 划分数据集比例train_ratio = 0.7val_ratio = 0.2test_ratio = 0.1train_count = int(train_ratio * len(image_files))val_count = int(val_ratio * len(image_files))test_count = len(image_files) - train_count - val_counttrain_files = image_files[:train_count]val_files = image_files[train_count:train_count + val_count]test_files = image_files[train_count + val_count:]# 移动文件到相应的目录def move_files(files, src_images_path, src_labels_path, dst_images_path, dst_labels_path):    for file in files:        src_image_file = os.path.join(src_images_path, f"{file}.png")        src_label_file = os.path.join(src_labels_path, f"{file}.txt")        dst_image_file = os.path.join(dst_images_path, f"{file}.png")        dst_label_file = os.path.join(dst_labels_path, f"{file}.txt")        if os.path.exists(src_image_file) and os.path.exists(src_label_file):            shutil.move(src_image_file, dst_image_file)            shutil.move(src_label_file, dst_label_file)# 移动训练集文件move_files(train_files, yolo_images_path, yolo_labels_path, train_images_path, train_labels_path)# 移动验证集文件move_files(val_files, yolo_images_path, yolo_labels_path, val_images_path, val_labels_path)# 移动测试集文件move_files(test_files, yolo_images_path, yolo_labels_path, test_images_path, test_labels_path)print("数据集划分完成!")

三、一步到位

如果不想分两步进行格式转换,那么以下脚本结合了以上两步,直接得到最后按比例划分训练、验证、测试的数据集结果。

在这里插入图片描述

注意:需要修改 voc_data_path ,yolo_data_path ,class_mapping 以及 ‘.png’ 后缀。

import osimport shutilimport randomimport xml.etree.ElementTree as ETfrom tqdm import tqdm# VOC格式数据集路径voc_data_path = 'E:\\DataSet-VOC'voc_annotations_path = os.path.join(voc_data_path, 'Annotations')voc_images_path = os.path.join(voc_data_path, 'JPEGImages')# YOLO格式数据集保存路径yolo_data_path = 'E:\\DataSet-YOLO'yolo_images_path = os.path.join(yolo_data_path, 'images')yolo_labels_path = os.path.join(yolo_data_path, 'labels')# 创建YOLO格式数据集目录os.makedirs(yolo_images_path, exist_ok=True)os.makedirs(yolo_labels_path, exist_ok=True)# 类别映射 (可以根据自己的数据集进行调整)class_mapping = {    'head': 0,    'helmet': 1,    'person': 2,    # 添加更多类别...}def convert_voc_to_yolo(voc_annotation_file, yolo_label_file):    tree = ET.parse(voc_annotation_file)    root = tree.getroot()    size = root.find('size')    width = float(size.find('width').text)    height = float(size.find('height').text)    with open(yolo_label_file, 'w') as f:        for obj in root.findall('object'):            cls = obj.find('name').text            if cls not in class_mapping:                continue            cls_id = class_mapping[cls]            xmlbox = obj.find('bndbox')            xmin = float(xmlbox.find('xmin').text)            ymin = float(xmlbox.find('ymin').text)            xmax = float(xmlbox.find('xmax').text)            ymax = float(xmlbox.find('ymax').text)            x_center = (xmin + xmax) / 2.0 / width            y_center = (ymin + ymax) / 2.0 / height            w = (xmax - xmin) / width            h = (ymax - ymin) / height            f.write(f"{cls_id} {x_center} {y_center} {w} {h}\n")# 遍历VOC数据集的Annotations目录,进行转换print("开始VOC到YOLO格式转换...")for voc_annotation in tqdm(os.listdir(voc_annotations_path)):    if voc_annotation.endswith('.xml'):        voc_annotation_file = os.path.join(voc_annotations_path, voc_annotation)        image_id = os.path.splitext(voc_annotation)[0]        voc_image_file = os.path.join(voc_images_path, f"{image_id}.png")        yolo_label_file = os.path.join(yolo_labels_path, f"{image_id}.txt")        yolo_image_file = os.path.join(yolo_images_path, f"{image_id}.png")        convert_voc_to_yolo(voc_annotation_file, yolo_label_file)        if os.path.exists(voc_image_file):            shutil.copy(voc_image_file, yolo_image_file)print("VOC到YOLO格式转换完成!")# 划分数据集train_images_path = os.path.join(yolo_data_path, 'train', 'images')train_labels_path = os.path.join(yolo_data_path, 'train', 'labels')val_images_path = os.path.join(yolo_data_path, 'val', 'images')val_labels_path = os.path.join(yolo_data_path, 'val', 'labels')test_images_path = os.path.join(yolo_data_path, 'test', 'images')test_labels_path = os.path.join(yolo_data_path, 'test', 'labels')os.makedirs(train_images_path, exist_ok=True)os.makedirs(train_labels_path, exist_ok=True)os.makedirs(val_images_path, exist_ok=True)os.makedirs(val_labels_path, exist_ok=True)os.makedirs(test_images_path, exist_ok=True)os.makedirs(test_labels_path, exist_ok=True)# 获取所有图片文件名(不包含扩展名)image_files = [f[:-4] for f in os.listdir(yolo_images_path) if f.endswith('.png')]# 随机打乱文件顺序random.shuffle(image_files)# 划分数据集比例train_ratio = 0.7val_ratio = 0.2test_ratio = 0.1train_count = int(train_ratio * len(image_files))val_count = int(val_ratio * len(image_files))test_count = len(image_files) - train_count - val_counttrain_files = image_files[:train_count]val_files = image_files[train_count:train_count + val_count]test_files = image_files[train_count + val_count:]# 移动文件到相应的目录def move_files(files, src_images_path, src_labels_path, dst_images_path, dst_labels_path):    for file in tqdm(files):        src_image_file = os.path.join(src_images_path, f"{file}.png")        src_label_file = os.path.join(src_labels_path, f"{file}.txt")        dst_image_file = os.path.join(dst_images_path, f"{file}.png")        dst_label_file = os.path.join(dst_labels_path, f"{file}.txt")        if os.path.exists(src_image_file) and os.path.exists(src_label_file):            shutil.move(src_image_file, dst_image_file)            shutil.move(src_label_file, dst_label_file)# 移动训练集文件print("移动训练集文件...")move_files(train_files, yolo_images_path, yolo_labels_path, train_images_path, train_labels_path)# 移动验证集文件print("移动验证集文件...")move_files(val_files, yolo_images_path, yolo_labels_path, val_images_path, val_labels_path)# 移动测试集文件print("移动测试集文件...")move_files(test_files, yolo_images_path, yolo_labels_path, test_images_path, test_labels_path)print("数据集划分完成!")# 删除原始的 images 和 labels 文件夹shutil.rmtree(yolo_images_path)shutil.rmtree(yolo_labels_path)print("原始 images 和 labels 文件夹删除完成!")

点击全文阅读


本文链接:http://m.zhangshiyu.com/post/184352.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1