当前位置:首页 » 《我的小黑屋》 » 正文

Qwen2.5-Coder-7B-Instruct模型本地部署,并实现简单的web对话

22 人参与  2025年01月01日 08:02  分类 : 《我的小黑屋》  评论

点击全文阅读


在自己电脑上部署一个聊天机器人,实现简单的chat界面,适用于千问2或者千问2.5的模型。windows环境也通用,修改好对应的路径就可以。

该Qwen-Coder-7B模型加载进显存后大约占用14G,支持流式传输,界面示例如图:

部署流程:

1、配置环境

在已经有torch+cuda的条件下,还需要以下几个库:

    pip install  transformers    pip install  accelerate    pip install  gradio

其中transformers库需满足版本大于等于4.37.0,用来加载模型,accelerate用于加速模型,gradio用于生成前端界面。

2、下载模型文件

下载模型的地方:(魔搭社区)

点击此处下载模型:

提供了很多种下载方式,选择一种方式下载即可:

3、加载模型

下面代码是官方的示例

from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "path/to/your/model"# 把这里修改成你下载的模型位置,比如我是/home/LLM/Qwen/Qwen2_5-Coder-7B-Instructmodel = AutoModelForCausalLM.from_pretrained( # 加载模型    model_name,    torch_dtype="auto",    device_map="auto")tokenizer = AutoTokenizer.from_pretrained(model_name) # 加载分词器prompt = "Give me a short introduction to large language model.Answer it in Chinese"messages = [    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},    {"role": "user", "content": prompt}]text = tokenizer.apply_chat_template(    messages,    tokenize=False,    add_generation_prompt=True)model_inputs = tokenizer([text], return_tensors="pt").to(model.device)generated_ids = model.generate(    **model_inputs,    max_new_tokens=512)response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)print(response)

4、实现简单的chat功能,进行web访问

首先导入需要用到的库和几个全局变量

from threading import Threadimport gradio as grfrom transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer# 分别是用户头像和聊天机器人的头像(需要在gradio工作的项目下,这里我的项目名为LLM)user_icon = '/home/LLM/Qwen-main/gradio_avatar_images/user_icon.jpeg'bot_icon = '/home/LLM/Qwen-main/gradio_avatar_images/bot_icon.jpg'model_name = '/home/LLM/Qwen/Qwen2_5-Coder-7B-Instruct' # 模型存放位置qwen_chat_history = [    {"role": "system", "content": "You are a helpful assistant."}]# 储存历史对话

定义一个加载模型的函数:

def _load_model():    tokenizer = AutoTokenizer.from_pretrained(model_name)    model = AutoModelForCausalLM.from_pretrained(        model_name,        torch_dtype="auto",        device_map="auto",    )    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)    return model, tokenizer, streamer
TextIteratorStreamer用于生成流式输出。

然后是整个聊天界面的一个实现,使用gradio库实现

with gr.Blocks() as demo:    model, tokenizer, streamer = _load_model() # 载入模型    chatbot = gr.Chatbot(        height=600, # 界面高度,可以自己调        avatar_images=(user_icon, bot_icon)    )# Chatbot还涉及很多参数,如需了解清查阅官方技术文档    msg = gr.Textbox()    clear = gr.ClearButton([msg, chatbot])        # 清除历史记录    def _clean_history():         global qwen_chat_history        qwen_chat_history = []    #生成回复    def _response(message, chat_history):        qwen_chat_history.append({"role": "user", "content": message}) # 拼接历史对话        history_str = tokenizer.apply_chat_template(            qwen_chat_history,            tokenize=False,            add_generation_prompt=True        )        inputs = tokenizer(history_str, return_tensors='pt').to(model.device)        chat_history.append([message, ""])        # 推理参数        generation_kwargs = dict(            **inputs,            streamer=streamer,            max_new_tokens=2048,            num_beams=1,            do_sample=True,            top_p=0.8,            temperature=0.3,        )        # 监控流失输出结果        thread = Thread(target=model.generate, kwargs=generation_kwargs)        thread.start()        for new_text in streamer:            chat_history[-1][1] += new_text            yield "", chat_history        qwen_chat_history.append(            {"role": "assistant", "content": chat_history[-1][1]}        )    clear.click(_clean_history())    msg.submit(_response, [msg, chatbot], [msg, chatbot])demo.queue().launch(    share=False,    server_port=8000,    server_name="127.0.0.1",) # 绑定8000端口,进行web访问

运行代码,会生成一个链接:

直接点开或者复制到浏览器打开就可以进入聊天界面:

完整代码:

from threading import Threadimport gradio as grfrom transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreameruser_icon = '/home/lhp/Desktop/LLM/Qwen-main/gradio_avatar_images/user_icon.jpeg'bot_icon = '/home/lhp/Desktop/LLM/Qwen-main/gradio_avatar_images/bot_icon.jpg'model_name = '/home/lhp/Desktop/LLM/Qwen/Qwen2_5-Coder-7B-Instruct'qwen_chat_history = [    {"role": "system", "content": "You are a helpful assistant."}]def _load_model():    tokenizer = AutoTokenizer.from_pretrained(model_name)    model = AutoModelForCausalLM.from_pretrained(        model_name,        torch_dtype="auto",        device_map="auto",    )    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)    return model, tokenizer, streamerwith gr.Blocks() as demo:    model, tokenizer, streamer = _load_model()    chatbot = gr.Chatbot(        height=600,        avatar_images=(user_icon, bot_icon)    )    msg = gr.Textbox()    clear = gr.ClearButton([msg, chatbot])    def _clean_history():        global qwen_chat_history        qwen_chat_history = []    def _response(message, chat_history):        qwen_chat_history.append({"role": "user", "content": message}) # 拼接历史对话        history_str = tokenizer.apply_chat_template(            qwen_chat_history,            tokenize=False,            add_generation_prompt=True        )        inputs = tokenizer(history_str, return_tensors='pt').to(model.device)        chat_history.append([message, ""])        # 拼接推理参数        generation_kwargs = dict(            **inputs,            streamer=streamer,            max_new_tokens=2048,            num_beams=1,            do_sample=True,            top_p=0.8,            temperature=0.3,        )        # 启动线程,用以监控流失输出结果        thread = Thread(target=model.generate, kwargs=generation_kwargs)        thread.start()        for new_text in streamer:            chat_history[-1][1] += new_text            yield "", chat_history        qwen_chat_history.append(            {"role": "assistant", "content": chat_history[-1][1]}        )    clear.click(_clean_history())    msg.submit(_response, [msg, chatbot], [msg, chatbot])demo.queue().launch(    share=False,    server_port=8000,    server_name="127.0.0.1",)


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/210049.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1