当前位置:首页 » 《休闲阅读》 » 正文

The 2021 ICPC Asia Regionals Online Contest (II)【解题报告】_The___Flash的博客

2 人参与  2022年02月02日 12:34  分类 : 《休闲阅读》  评论

点击全文阅读


戳我进入比赛


Problem A. Sort

题目大意

T T T 组,每组给出一个长度为 n n n 的序列 a [ ] a[] a[] 和 整数 k k k.

定义一次操作为将序列 a [ ] a[] a[] 分割成 v i v_i vi 段,再对段做置换 p i p_i pi.

若在有限次数操作中,无法使得序列 a [ ] a[] a[] 变成非降序,则输出 − 2 -2 2.

若在有限次数操作中,可以使得序列 a [ ] a[] a[] 变成非降序,且 ∑ v i ≤ 3 n \sum{v_i} \leq 3n vi3n,则输出方案,否则输出 − 1 -1 1.

1 ≤ T ≤ 1 0 3 , 1 ≤ k , n ≤ 1 0 3 , 1 ≤ a [ i ] ≤ 1 0 9 , ∑ n ≤ 3 × 1 0 4 1 \leq T \leq 10^3, 1 \leq k,n \leq 10^3,1 \leq a[i] \leq 10^9, \sum{n} \leq 3\times 10^4 1T103,1k,n103,1a[i]109,n3×104.

分析

不难发现,当 k ≥ 3 k \geq 3 k3 时,总可以构造出合法方案,就是一傻逼模拟题(被细节搞炸

k = 2 k=2 k=2 时,注意这个样例

2
3 2
1 2 1
2 1 2

代码实现

#include <bits/stdc++.h>
using namespace std;

const int M = (int)1e3;

int n, k;
int a[M + 5];
int b[M + 5];

bool is_sort(int p)
{
    for(int i = 1; i < n; ++i)
    {
        if(a[(i + p - 2) % n + 1] > a[(i + p - 1) % n + 1]) return 0;
    }
    return 1;
}

void work()
{
    scanf("%d %d", &n, &k);
    for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
    if(n == 1) printf("0\n");
    else if(k == 1)
    {
        if(is_sort(1)) printf("0\n");
        else           printf("-2\n");
    }
    else if(k == 2)
    {
        if(is_sort(1)) printf("0\n");
        else
        {
            for(int i = 1; i <= n; ++i)
            {
                if(is_sort(i))
                {
                    printf("1\n");
                    printf("2\n");
                    printf("%d %d %d\n", 0, i - 1, n);
                    printf("2 1\n");
                    for(int j = 1; j <= n; ++j) b[j] = a[j];
                    for(int j = 1; j <= n - i + 1; ++j) a[j] = b[j - 1 + i];
                    for(int j = n - i + 2; j <= n; ++j) a[j] = b[j - n + i - 1];
                    return;
                }
            }
            printf("-2\n");
        }
    }
    else if(k >= 3)
    {
        printf("%d\n", n - 1);
        for(int i = 1; i < n; ++i)
        {
            int p = i; for(int j = i; j <= n; ++j) if(a[p] > a[j]) p = j;
            if(i == p)
            {
                printf("2\n");
                printf("%d %d %d\n", 0, 1, n);
                printf("1 2\n");
            }
            else if(i == 1)
            {
                printf("2\n");
                printf("%d %d %d\n", 0, p - 1, n);
                printf("2 1\n");
                for(int j = 1; j <= n; ++j) b[j] = a[j];
                for(int j = 1; j <= n - p + 1; ++j) a[j] = b[j + p - 1];
                for(int j = n - p + 2; j <= n; ++j) a[j] = b[j - n + p - 1];
            }
            else
            {
                printf("3\n");
                printf("%d %d %d %d\n", 0, i - 1, p - 1, n);
                printf("1 3 2\n");
                for(int j = 1; j <= n; ++j) b[j] = a[j];
                for(int j = 1; j <= i - 1; ++j) a[j] = b[j];
                for(int j = i; j <= i + n - p; ++j) a[j] = b[j - i + p];
                for(int j = i + n - p + 1; j <= n; ++j) a[j] = b[j - n + p - 1];
            }
        }
    }
}

int main()
{
    int T; scanf("%d", &T);
    for(int ca = 1; ca <= T; ++ca)
    {
        work();
    }
    return 0;
}

Problem G. Limit

题目大意

给出 n , a i , b i , t n, a_i, b_i, t n,ai,bi,t,求 lim ⁡ x → 0 ∑ i = 1 n a i l n ( 1 + b i x ) x t \lim\limits_{x \rightarrow 0}{\frac{\sum_{i=1}^n{a_i ln(1+b_ix)}}{x^t}} x0limxti=1nailn(1+bix).

1 ≤ n ≤ 1 0 5 , − 100 ≤ a , b ≤ 100 , 0 ≤ t ≤ 5 1 \leq n \leq 10^5, -100 \leq a, b \leq 100, 0 \leq t \leq 5 1n105,100a,b100,0t5.

分析

神他喵抓大头,直接无脑泰勒展开(赛时还想多项式卷积

结论:三个人都不会高数

代码实现

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

int n, t;
ll c[10];

void work()
{
    scanf("%d %d", &n, &t);
    for(int i = 1, a, b; i <= n; ++i)
    {
        scanf("%d %d", &a, &b);
        ll cur = a;
        for(int j = 1; j <= t; ++j)
        {
            cur *= b;
            c[j] += ((j&1) ? cur : -cur);
        }
    }
    if(!t) printf("0\n");
    else
    {
        for(int i = 1; i < t; ++i)
        {
            if(c[i])
            {
                printf("infinity\n");
                return;
            }
        }
        if(c[t] == 0) printf("0\n");
        else
        {
            ll d = (ll)abs(__gcd(1ll * t, c[t]));
            ll up = c[t] / d, dn = t / d;
            if(dn == 1) printf("%lld\n", up);
            else       printf("%lld/%d\n", up, dn);
        }
    }
}

int main()
{
    work();
    return 0;
}

Problem H. Set

题目大意

定义集合 S = { 1 , 2 , ⋯   , 256 } S=\{1,2, \cdots, 256\} S={1,2,,256},给出两个整数 k k k r r r.

要求构造集合 S S S k k k 个子集 I i I_i Ii,要求对任意的 1 ≤ i 1 < i 2 < ⋯ < i r ≤ n 1 \leq i_1 < i_2 < \cdots < i_r \leq n 1i1<i2<<irn 满足 ∣ ⋃ j = 1 r I i j ∣ ≥ 128 |\bigcup_{j=1}^{r}{I_{i_j}}| \geq 128 j=1rIij128,且 m a x { ∣ I i ∣ } ≤ ⌈ 512 r ⌉ max\{|I_i|\} \leq \lceil \frac{512}{r} \rceil max{Ii}r512.

3 ≤ r ≤ k ≤ 26 3 \leq r \leq k \leq 26 3rk26.

分析

直接 rand 所有子集就行了…

证明以后再补(咕咕咕

代码实现

#include <bits/stdc++.h>
using namespace std;

int Rand(int l, int r)
{
    return rand() % (r - l + 1) + l;
}

void work()
{
    int k, r; scanf("%d %d", &k, &r);
    for(int i = 1; i <= k; ++i)
    {
        set<int> st;
        while((int)st.size() < (512 + r - 1) / r) st.insert(Rand(1, 256));
        for(int j = 1; j <= 256; ++j)
        {
            printf("%d", st.count(j));
        }
        printf("\n");
    }
}

int main()
{
    srand(time(NULL));
    work();
    return 0;
}

Problem J. Leaking Roof

题目大意

给一个 n × n n \times n n×n 的矩阵 h i j h_{ij} hij 表示 ( i , j ) (i,j) (i,j) 的高度.

现在每个单元都下了 m m m 单位的雨水, ( i , j ) (i,j) (i,j) 的雨水会平均地流向四周高度比它低的单元.

若高度为 0 0 0 的点有雨水,则这个点会漏水.

求足够长时间后,每个点的漏水量.

1 ≤ n ≤ 500 , 0 ≤ m , h i j ≤ 1 0 4 1 \leq n \leq 500, 0 \leq m,h_{ij} \leq 10^4 1n500,0m,hij104.

分析

按照高度依次处理雨水的流动,模拟就行了.

代码实现

#include <bits/stdc++.h>
using namespace std;

const int M = (int)5e2;

int n, m;
int h[M + 5][M + 5];
int id[M * M + 5];
double a[M + 5][M + 5];
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};

bool cmp(int a, int b)
{
    return h[a / n][a % n] > h[b / n][b % n];
}

void work()
{
    scanf("%d %d", &n, &m);
    for(int i = 0; i < n; ++i)
    {
        for(int j = 0; j < n; ++j)
        {
            id[i * n + j] = i * n + j;
            scanf("%d", &h[i][j]);
            a[i][j] = 1.0 * m;
        }
    }
    sort(id, id + n * n, cmp);
    for(int i = 0; i < n * n; ++i)
    {
        int x = id[i] / n, y = id[i] % n, c = 0;
        for(int j = 0; j < 4; ++j)
        {
            int xx = x + dx[j], yy = y + dy[j];
            if(xx >= 0 && xx < n && yy >= 0 && yy < n && h[xx][yy] < h[x][y]) ++c;
        }
        if(c)
        {
            for(int j = 0; j < 4; ++j)
            {
                int xx = x + dx[j], yy = y + dy[j];
                if(xx >= 0 && xx < n && yy >= 0 && yy < n && h[xx][yy] < h[x][y]) a[xx][yy] += a[x][y] / c;
            }
            a[x][y] = 0;
        }
    }
    for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) printf("%.9f%c", h[i][j] ? 0 : a[i][j], j == n - 1 ? '\n' : ' ');
}

int main()
{
    work();
    return 0;
}

Problem K. Meal

题目大意

n n n 个人, n n n 道菜,第 i i i 个人对第 j j j 道菜的好感度为 a i j a_{ij} aij.

初始,集合 S = { 1 , 2 , ⋯   , n } S = \{1,2,\cdots ,n\} S={1,2,,n}.

n n n 个人按照序号轮流点菜,对于第 i i i 个人,他点到第 j j j 道菜的概率为 a i j ∑ k ∈ S a i k \frac{a_{ij}}{\sum_{k \in S}{a_{ik}}} kSaikaij,然后把 j j j S S S 中删除.

求第 i i i 个人点到第 j j j 道菜的概率.

1 ≤ n ≤ 20 , 1 ≤ a i j ≤ 100 1 \leq n \leq 20, 1 \leq a_{ij} \leq 100 1n20,1aij100.

分析

状压DP模板题~

代码实现

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

const int M = (int)20;
const ll mod = (ll)998244353;

int n, a[M][M];
int f[1<<M];
int s[1<<M];
int p[M][M];

ll quick(ll a, ll b, ll p = mod)
{
    ll s = 1;
    while(b)
    {
        if(b & 1) s = s * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return s % p;
}

ll inv(ll n, ll p = mod)
{
    return quick(n, p - 2, p);
}

void work()
{
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) scanf("%d", &a[i][j]);
    for(int i = 0; i < (1<<n); ++i)
    {
        int c = __builtin_popcount(i);
        for(int j = 0; j < n; ++j) if(!(i>>j&1)) s[i] += a[c][j];
        s[i] = inv(s[i]);
    }
    f[0] = 1;
    for(int i = 1; i < (1<<n); ++i)
    {
        int c = __builtin_popcount(i) - 1;
        for(int j = 0; j < n; ++j)
        {
            if(!(i>>j&1)) continue;
            (p[c][j] += 1ll * f[i^(1<<j)] * a[c][j] % mod * s[i^(1<<j)] % mod) %= mod;
            (f[i] += 1ll * f[i^(1<<j)] * a[c][j] % mod * s[i^(1<<j)] % mod) %= mod;
        }
    }
    for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) printf("%d%c", p[i][j], j == n - 1 ? '\n' : ' ');
}

int main()
{
    work();
    return 0;
}

Problem L. Euler Function

题目大意

n n n 个数 a [ ] a[] a[] m m m 次操作.

操作分为两种

0    l    r    w 0 \; l \; r \; w 0lrw 表示 a [ i ] ∗ = w i ∈ [ l , r ] a[i] *= w \quad i \in [l, r] a[i]=wi[l,r].

1    l    r 1 \; l \; r 1lr 表示查询 ∑ i = l r φ ( a [ i ] ) \sum_{i=l}^{r}{\varphi(a[i])} i=lrφ(a[i]).

1 ≤ n , m ≤ 1 0 5 , 1 ≤ a i , w ≤ 100 , 1 ≤ l ≤ r ≤ n 1 \leq n,m \leq 10^5, 1 \leq a_i,w \leq 100, 1 \leq l \leq r \leq n 1n,m105,1ai,w100,1lrn.

分析

势能线段树(之前见过,但这是第一次知道还有这个名字

改了改线段树的码风

代码实现

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

const int M = (int)1e5;
const int N = (int)1e2;
const ll mod = (ll)998244353;

bool is_prime[N + 5];
int prime[N + 5], cnt;
int pw[N + 5][M + 5];

void init()
{
    memset(is_prime, 1, sizeof(is_prime));
    cnt = is_prime[0] = is_prime[1] = 0;
    for(int i = 2; i <= N; ++i)
    {
        if(is_prime[i]) prime[++cnt] = i;
        for(int j = 1; j <= cnt && i * prime[j] <= N; ++j)
        {
            is_prime[i * prime[j]] = 0;
            if(i % prime[j] == 0) break;
        }
    }
    for(int i = 1; i <= cnt; ++i)
    {
        pw[i][0] = 1; for(int j = 1; j <= M; ++j) pw[i][j] = 1ll * pw[i][j - 1] * prime[i] % mod;
    }
}

int n, m;
struct tnode
{
    int s[M * 4 + 5], lz[M * 4 + 5][26]; bool is[M * 4 + 5][26];

    inline int lc(int k) {return k<<1;}
    inline int rc(int k) {return k<<1|1;}

    inline void push_up(int k)
    {
        int l = lc(k), r = rc(k);
        s[k] = (s[l] + s[r]) % mod;
        for(int i = 1; i <= cnt; ++i) is[k][i] = (is[l][i]&is[r][i]);
    }

    inline void push_down(int k)
    {
        int l = lc(k), r = rc(k);
        for(int i = 1; i <= cnt; ++i)
        {
            if(!lz[k][i]) continue;
            s[l] = 1ll * s[l] * pw[i][lz[k][i]] % mod, lz[l][i] += lz[k][i];
            s[r] = 1ll * s[r] * pw[i][lz[k][i]] % mod, lz[r][i] += lz[k][i];
            lz[k][i] = 0;
        }
    }

    void build(int k, int l, int r)
    {
        if(l == r)
        {
            int x; scanf("%d", &x);
            s[k] = x;
            for(int i = 1; i <= cnt && prime[i] * prime[i] <= x; ++i)
            {
                if(x % prime[i] == 0)
                {
                    s[k] = s[k] / prime[i] * (prime[i] - 1);
                    is[k][i] = 1;
                    while(x % prime[i] == 0) x /= prime[i];
                }
            }
            if(x > 1) s[k] = s[k] / x * (x - 1), is[k][lower_bound(prime + 1, prime + cnt + 1, x) - prime] = 1;
            return;
        }
        int mid = (l + r) >> 1;
        build(lc(k), l, mid);
        build(rc(k), mid + 1, r);
        push_up(k);
    }

    void update(int k, int l, int r, int a, int b, int p, int c)
    {
        if(l >= a && r <= b && is[k][p])
        {
            s[k] = 1ll * s[k] * pw[p][c] % mod;
            lz[k][p] += c;
            return;
        }
        if(l == r)
        {
            s[k] = 1ll * s[k] * (pw[p][c] - pw[p][c - 1]) % mod;
            is[k][p] = 1;
            return;
        }
        push_down(k);
        int mid = (l + r) >> 1;
        if(a <= mid) update(lc(k), l, mid, a, b, p, c);
        if(mid < b)  update(rc(k), mid + 1, r, a, b, p, c);
        push_up(k);
    }

    int query(int k, int l, int r, int a, int b)
    {
        if(l >= a && r <= b) return s[k];
        push_down(k);
        int mid = (l + r) >> 1, sum = 0;
        if(a <= mid) (sum += query(lc(k), l, mid, a, b)) %= mod;
        if(mid < b)  (sum += query(rc(k), mid + 1, r, a, b)) %= mod;
        return sum;
    }
} tr;

void work()
{
    scanf("%d %d", &n, &m);
    tr.build(1, 1, n);
    for(int i = 1, op, l, r, w; i <= m; ++i)
    {
        scanf("%d", &op);
        if(op == 0)
        {
            scanf("%d %d %d", &l, &r, &w);
            for(int j = 1; j <= cnt && prime[j] * prime[j] <= w; ++j)
            {
                if(w % prime[j]) continue;
                int c = 0;
                while(w % prime[j] == 0) ++c, w /= prime[j];
                tr.update(1, 1, n, l, r, j, c);
            }
            if(w > 1) tr.update(1, 1, n, l, r, lower_bound(prime + 1, prime + cnt + 1, w) - prime, 1);
        }
        else
        {
            scanf("%d %d", &l, &r);
            printf("%d\n", (tr.query(1, 1, n, l, r) % mod + mod) % mod);
        }
    }
}

int main()
{
//    freopen("input.txt", "r", stdin);
    init();
    work();
    return 0;
}

Problem M. Addition

题目大意

定义 n n n 2 2 2 进制数表示为 ∑ i = 0 n v a l i × 2 i × s g n [ i ] \sum_{i=0}^n{val_i \times 2^i \times sgn[i]} i=0nvali×2i×sgn[i].

给出 n , s g n [ ] n,sgn[] n,sgn[] v a l a i , v a l b i val_{a_i}, val_{b_i} valai,valbi,令 c = a + b c = a + b c=a+b,求出 c c c 的上述表示.

32 ≤ n ≤ 60 , s g n i ∈ { − 1 , 1 } , v a l a i ∈ { 0 , 1 } , v a l b i ∈ { 0 , 1 } 32 \leq n \leq 60, sgn_i \in \{-1, 1\}, val_{a_i} \in \{0,1\}, val_{b_i} \in \{0,1\} 32n60,sgni{1,1},valai{0,1},valbi{0,1}.

分析

连续的低位会构成连续的值域,因此只需要从高到低扫一遍,逐一确认每一位即可.

代码实现

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

const int M = (int)1e2;

int n;
int sgn[M + 5];
ll mi[M + 5], mx[M + 5];
int ans[M + 5];

void work()
{
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) scanf("%d", &sgn[i]);
    if(sgn[0] == 1) mi[0] = 0, mx[0] = 1;
    else            mi[0] = -1, mx[0] = 0;
    for(int i = 1; i < n; ++i)
    {
        if(sgn[i] == 1) mi[i] = mi[i - 1], mx[i] = mx[i - 1] + (1ll<<i);
        else            mi[i] = mi[i - 1] - (1ll<<i), mx[i] = mx[i - 1];
    }
    ll a = 0; for(int i = 0, x; i < n; ++i) scanf("%d", &x), a += (1ll<<i) * x * sgn[i];
    ll b = 0; for(int i = 0, x; i < n; ++i) scanf("%d", &x), b += (1ll<<i) * x * sgn[i];
    ll c = a + b;
    for(int i = n - 1; i >= 0; --i)
    {
        if(i)
        {
            if(mi[i - 1] <= c && c <= mx[i - 1]) ans[i] = 0;
            else    c -= sgn[i] * (1ll<<i), ans[i] = 1;
        }
        else if(c) ans[i] = 1;
    }
    for(int i = 0; i < n; ++i) printf("%d%c", ans[i], i == n - 1 ? '\n' : ' ');
}

int main()
{
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);
    work();
    return 0;
}

点击全文阅读


本文链接:http://m.zhangshiyu.com/post/34200.html

大意  题目  代码  
<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1