当前位置:首页 » 《随便一记》 » 正文

YOLOv5 Head解耦

3 人参与  2022年12月24日 11:53  分类 : 《随便一记》  评论

点击全文阅读


Decoupled_Detect

一、common.py文件中加入DecoupledHead

class DecoupledHead(nn.Module):    def __init__(self, ch=256, nc=80,  anchors=()):        super().__init__()        self.nc = nc  # number of classes        self.nl = len(anchors)  # number of detection layers        self.na = len(anchors[0]) // 2  # number of anchors        self.merge = Conv(ch, 256 , 1, 1)        self.cls_convs1 = Conv(256 , 256 , 3, 1, 1)        self.cls_convs2 = Conv(256 , 256 , 3, 1, 1)        self.reg_convs1 = Conv(256 , 256 , 3, 1, 1)        self.reg_convs2 = Conv(256 , 256 , 3, 1, 1)        self.cls_preds = nn.Conv2d(256 , self.nc * self.na, 1)        self.reg_preds = nn.Conv2d(256 , 4 * self.na, 1)        self.obj_preds = nn.Conv2d(256 , 1 * self.na, 1)    def forward(self, x):        x = self.merge(x)        x1 = self.cls_convs1(x)        x1 = self.cls_convs2(x1)        x1 = self.cls_preds(x1)        x2 = self.reg_convs1(x)        x2 = self.reg_convs2(x2)        x21 = self.reg_preds(x2)        x22 = self.obj_preds(x2)        out = torch.cat([x21, x22, x1], 1)        return out

二、yolo.py文件中加入加入Decoupled_Detect

class Decoupled_Detect(nn.Module):    stride = None  # strides computed during build    onnx_dynamic = False  # ONNX export parameter    export = False  # export mode    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer        super().__init__()        self.nc = nc  # number of classes        self.no = nc + 5  # number of outputs per anchor        self.nl = len(anchors)  # number of detection layers        self.na = len(anchors[0]) // 2  # number of anchors        self.grid = [torch.zeros(1)] * self.nl  # init grid        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)        self.m = nn.ModuleList(DecoupledHead(x, nc, anchors) for x in ch)        self.inplace = inplace  # use in-place ops (e.g. slice assignment)    def forward(self, x):        z = []  # inference output        for i in range(self.nl):            x[i] = self.m[i](x[i])  # conv            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()            if not self.training:  # inference                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)                y = x[i].sigmoid()                if self.inplace:                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh                    y = torch.cat((xy, wh, conf), 4)                z.append(y.view(bs, -1, self.no))        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):        d = self.anchors[i].device        t = self.anchors[i].dtype        shape = 1, self.na, ny, nx, 2  # grid shape        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)        yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)        return grid, anchor_grid

在yolo.py文件Model类中做如下修改 

 在yolo.py文件parse_model函数下做如下修改

三、yaml文件中的Detect改为Decoupled_Detect

ASFF_Detect

一、common.py文件中加入ASFFV5

class ASFFV5(nn.Module):    def __init__(self, level, multiplier=1, rfb=False, vis=False, act_cfg=True):        """        ASFF version for YoloV5 .        different than YoloV3        multiplier should be 1, 0.5        which means, the channel of ASFF can be        512, 256, 128 -> multiplier=1        256, 128, 64 -> multiplier=0.5        For even smaller, you need change code manually.        """        super(ASFFV5, self).__init__()        self.level = level        self.dim = [int(1024 * multiplier), int(512 * multiplier),                    int(256 * multiplier)]        # print(self.dim)        self.inter_dim = self.dim[self.level]        if level == 0:            self.stride_level_1 = Conv(int(512 * multiplier), self.inter_dim, 3, 2)            self.stride_level_2 = Conv(int(256 * multiplier), self.inter_dim, 3, 2)            self.expand = Conv(self.inter_dim, int(                1024 * multiplier), 3, 1)        elif level == 1:            self.compress_level_0 = Conv(                int(1024 * multiplier), self.inter_dim, 1, 1)            self.stride_level_2 = Conv(                int(256 * multiplier), self.inter_dim, 3, 2)            self.expand = Conv(self.inter_dim, int(512 * multiplier), 3, 1)        elif level == 2:            self.compress_level_0 = Conv(                int(1024 * multiplier), self.inter_dim, 1, 1)            self.compress_level_1 = Conv(                int(512 * multiplier), self.inter_dim, 1, 1)            self.expand = Conv(self.inter_dim, int(                256 * multiplier), 3, 1)        # when adding rfb, we use half number of channels to save memory        compress_c = 8 if rfb else 16        self.weight_level_0 = Conv(            self.inter_dim, compress_c, 1, 1)        self.weight_level_1 = Conv(            self.inter_dim, compress_c, 1, 1)        self.weight_level_2 = Conv(            self.inter_dim, compress_c, 1, 1)        self.weight_levels = Conv(            compress_c * 3, 3, 1, 1)        self.vis = vis    def forward(self, x):  # l,m,s        """        # 128, 256, 512        512, 256, 128        from small -> large        """        x_level_0 = x[2]  # l        x_level_1 = x[1]  # m        x_level_2 = x[0]  # s        # print('x_level_0: ', x_level_0.shape)        # print('x_level_1: ', x_level_1.shape)        # print('x_level_2: ', x_level_2.shape)        if self.level == 0:            level_0_resized = x_level_0            level_1_resized = self.stride_level_1(x_level_1)            level_2_downsampled_inter = F.max_pool2d(                x_level_2, 3, stride=2, padding=1)            level_2_resized = self.stride_level_2(level_2_downsampled_inter)        elif self.level == 1:            level_0_compressed = self.compress_level_0(x_level_0)            level_0_resized = F.interpolate(                level_0_compressed, scale_factor=2, mode='nearest')            level_1_resized = x_level_1            level_2_resized = self.stride_level_2(x_level_2)        elif self.level == 2:            level_0_compressed = self.compress_level_0(x_level_0)            level_0_resized = F.interpolate(                level_0_compressed, scale_factor=4, mode='nearest')            x_level_1_compressed = self.compress_level_1(x_level_1)            level_1_resized = F.interpolate(                x_level_1_compressed, scale_factor=2, mode='nearest')            level_2_resized = x_level_2        # print('level: {}, l1_resized: {}, l2_resized: {}'.format(self.level,        #      level_1_resized.shape, level_2_resized.shape))        level_0_weight_v = self.weight_level_0(level_0_resized)        level_1_weight_v = self.weight_level_1(level_1_resized)        level_2_weight_v = self.weight_level_2(level_2_resized)        # print('level_0_weight_v: ', level_0_weight_v.shape)        # print('level_1_weight_v: ', level_1_weight_v.shape)        # print('level_2_weight_v: ', level_2_weight_v.shape)        levels_weight_v = torch.cat(            (level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)        levels_weight = self.weight_levels(levels_weight_v)        levels_weight = F.softmax(levels_weight, dim=1)        fused_out_reduced = level_0_resized * levels_weight[:, 0:1, :, :] + \                            level_1_resized * levels_weight[:, 1:2, :, :] + \                            level_2_resized * levels_weight[:, 2:, :, :]        out = self.expand(fused_out_reduced)        if self.vis:            return out, levels_weight, fused_out_reduced.sum(dim=1)        else:            return out

二、yolo.py文件中加入加入ASFF_Detect

class ASFF_Detect(nn.Module):   #add ASFFV5 layer and Rfb     stride = None  # strides computed during build    onnx_dynamic = False  # ONNX export parameter    export = False  # export mode    def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5,rfb=False,inplace=True):  # detection layer        super().__init__()        self.nc = nc  # number of classes        self.no = nc + 5  # number of outputs per anchor        self.nl = len(anchors)  # number of detection layers        self.na = len(anchors[0]) // 2  # number of anchors        self.grid = [torch.zeros(1)] * self.nl  # init grid        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier,rfb=rfb)        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier,rfb=rfb)        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier,rfb=rfb)        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv        self.inplace = inplace  # use in-place ops (e.g. slice assignment)    def forward(self, x):        z = []  # inference output        result=[]               result.append(self.l2_fusion(x))        result.append(self.l1_fusion(x))        result.append(self.l0_fusion(x))        x=result              for i in range(self.nl):            x[i] = self.m[i](x[i])  # conv            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()            if not self.training:  # inference                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)                y = x[i].sigmoid()                if self.inplace:                    y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xy                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh                    y = torch.cat((xy, wh, conf), 4)                z.append(y.view(bs, -1, self.no))        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)        def _make_grid(self, nx=20, ny=20, i=0,torch_1_10=check_version(torch.__version__, '1.10.0')):        d = self.anchors[i].device        t = self.anchors[i].dtype        shape = 1, self.na, ny, nx, 2  # grid shape        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)        if torch_1_10:  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility            yv, xv = torch.meshgrid(y, x, indexing='ij')        else:            yv, xv = torch.meshgrid(y, x)        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)        #print(anchor_grid)        return grid, anchor_grid

在yolo.py文件Model类中做如下修改

 在yolo.py文件parse_model函数下做如下修改

三、yaml文件中的Detect改为ASFF_Detect


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/50308.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1