当前位置:首页 » 《随便一记》 » 正文

【C++】哈希——unordered系列容器|哈希冲突|闭散列|开散列

10 人参与  2023年03月29日 09:21  分类 : 《随便一记》  评论

点击全文阅读


文章目录

一、unordered系列关联式容器二、哈希概念三、哈希冲突四、哈希函数五、解决哈希冲突1.闭散列——开放定址法2.代码实现3.开散列——开链法4.代码实现 六、结语

一、unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同 :unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构

unordered_set:

image-20230221092925663

与set的区别在于不支持方向迭代器,只是单向迭代器,其他接口基本与set相似

int main(){unordered_set<int> us;us.insert(10);us.insert(1);us.insert(10);us.insert(3);us.insert(4);us.insert(4);auto it = us.begin();while (it != us.end()){cout << *it << " ";it++;}cout << endl;return 0;}

无序+去重

image-20230221093543401

unordered_map:

image-20230221093830673

迭代器也是单向迭代器,其他也基本与map相似

int main(){unordered_map<string, int> countMap;string arr[] = { "苹果","香蕉","苹果" };for (auto& e : arr){auto it = countMap.find(e);/*if (it == countMap.end()){countMap.insert(make_pair(e, 1));}else{it->second++;}*/countMap[e]++;}for (auto& kv : countMap){cout << kv.first << ":" << kv.second << endl;}return 0;}

image-20230221094715857

unordered_map的桶操作

函数声明功能介绍
size_t bucket_count()const返回哈希桶中桶的总个数
size_t bucket_size(size_t n)const返回n号桶中有效元素的总个数
size_t bucket(const K& key)返回元素key所在的桶号

实际运用:

在长度 2N 的数组中找出重复 N 次的元素

给你一个整数数组 nums ,该数组具有以下属性:

nums.length == 2 * n.
nums 包含 n + 1 个 不同的 元素
nums 中恰有一个元素重复 n 次
找出并返回重复了 n 次的那个元素。

image-20230227222416321

class Solution {public:    int repeatedNTimes(vector<int>& nums) {        unordered_map<int,int> CountMap;        //统计次数        for(auto& e:nums)        {            CountMap[e]++;        }        //符合条件        for(auto&kv:CountMap)        {            if(kv.second==nums.size()/2)                return kv.first;        }        return -1;    }};

image-20230227222819752

insert\find\erase性能比较:随机数下unordered系列效率更高,但是有序数的情况下就不行了

int main(){const size_t N = 1000000;unordered_set<int> us;set<int> s;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; ++i){v.push_back(rand());}size_t begin1 = clock();for (auto e : v){s.insert(e);}size_t end1 = clock();cout << "set insert:" << end1 - begin1 << endl;size_t begin2 = clock();for (auto e : v){us.insert(e);}size_t end2 = clock();cout << "unordered_set insert:" << end2 - begin2 << endl;size_t begin3 = clock();for (auto e : v){s.find(e);}size_t end3 = clock();cout << "set find:" << end3 - begin3 << endl;size_t begin4 = clock();for (auto e : v){us.find(e);}size_t end4 = clock();cout << "unordered_set find:" << end4 - begin4 << endl;cout << s.size() << endl;cout << us.size() << endl;size_t begin5 = clock();for (auto e : v){s.erase(e);}size_t end5 = clock();cout << "set erase:" << end5 - begin5 << endl;size_t begin6 = clock();for (auto e : v){us.erase(e);}size_t end6 = clock();cout << "unordered_set erase:" << end6 - begin6 << endl;return 0;}

image-20230221095441761


二、哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( ),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

哈希映射:key值跟存储位置建立关联关系

当向该结构中插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小:比如数据集合{1,7,6,4,5,9}

image-20230222000218968

三、哈希冲突

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快问题。但是当插入元素44,会出现哈希冲突

哈希冲突:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞 ,比如44%10=4,但是4的位置已经被占用了。


四、哈希函数

如果哈希函数设计的不够合理就会引发哈希冲突。

哈希函数设计原则:

哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
哈希函数计算出来的地址能均匀分布在整个空间中
哈希函数应该比较简单

常见哈希函数

直接定制法–(常用)
取关键字的某个线性函数为散列地址:HashKey= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况使用场景:适合查找比较小且连续的情况除留余数法–(常用)
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:**Hash(key) = key% p(p<=m),**将关键码转换成哈希地址平方取中法–(了解)
假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况折叠法–(了解)
折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况随机数法–(了解)
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。通常应用于关键字长度不等时采用此法数学分析法–(了解)
设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。

哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


五、解决哈希冲突

解决哈希冲突两种常见的方法是:闭散列和开散列

1.闭散列——开放定址法

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止

插入:通过哈希函数获取待插入元素在哈希表中的位置

image-20230221141603403

删除 :采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索 ,比如上述例子中,如果删除27,此时要在找38,会发现在搜索过程就遇到了空,影响到了38的查找。解决方案:线性探测采用标记的伪删除法来删除一个元素 ,给每个位置加一个状态标识

在有限的空间内,随着我们插入的数据越来越多,冲突的概率也越来越大,查找效率越来越低,所以闭散列的冲突表不可能让它满了,所以引入了负载因子:

负载因子/载荷因子:等于表中的有效数据个数/表的大小,衡量表的满程度,在闭散列中负载因子不可能超过1(1代表满了)。一般情况下,负载因子一般在0.7左右。负载因子越小,冲突概率也越小,但是消耗的空间越大,负载因子越大,冲突概率越大,空间的利用率越高。

当负载因子大于0.7的时候就需要进行扩容了:扩容不能进行直接拷贝,映射的位置会随空间大小发生变化,所以需要重新计算映射的位置.

线性探测优点:逻辑简单,实现也简单
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,直到找到空为止,导致搜索效率降低

二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找(start+i),二次探测为了避免该问题,找下一个空位置的方法为:以i的2次方去进行探测(start+i^2):

image-20230222000044364

但是本质上还是没有解决问题,占用别人的空间

2.代码实现

#include <vector>template<class K> //仿函数struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//特化template<>struct HashFunc<string>{size_t operator()(const string& key){size_t hash = 0;for (auto ch : key){hash *= 131;//顺序?abc,cbahash += ch;}return hash;}};//闭散列namespace closehash{enum State{EMPTY,EXIST,DELETE,};template<class K,class V>struct HashData{pair<K, V> _kv;State _state = EMPTY;};template<class K,class V,class Hash=HashFunc<K>>class HashTable{typedef HashData<K,V> Data;public:HashTable():_n(0){_tables.resize(10);}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;//负载因子if (_n * 10 / _tables.size() >= 7){HashTable<K, V, Hash> newHT;newHT._tables.resize(_tables.size()*2);for (auto& e : _tables){if (e._state == EXIST){newHT.Insert(e._kv);}}}Hash hf;//string?size_t hashi = hf(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){++hashi;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;++_n;return true;}Data* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();size_t start = hasiwhile (_tables[hashi]._state != EMPTY){if (_tables[hashi]._state == EXIST && _tables[hashi]._kv.first == key){return &_tables[hashi];}++hashi;hashi %= _tables.size();//全是存在或者删除状态if(hashi==starti){break;}}return nullptr;}bool Erase(const K& key){Data* ret = Find(key);if (ret){ret->_state = DELETE;--_n;return true;}else{return false;}}private:vector<Data> _tables;size_t _n = 0;};void TestHT1(){HashTable<int, int> ht;int a[] = { 18, 8, 7, 27, 57, 3, 38, 18 };for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(17, 17));ht.Insert(make_pair(5, 5));cout << ht.Find(7) << endl;cout << ht.Find(8) << endl;ht.Erase(7);cout << ht.Find(7) << endl;cout << ht.Find(8) << endl;}void TestHT2(){string arr[] = { "苹果", "西瓜", "香蕉", "草莓", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };//HashTable<string, int, HashFuncString> countHT;HashTable<string, int> countHT;for (auto& e : arr){HashData<string, int>* ret = countHT.Find(e);if (ret){ret->_kv.second++;}else{countHT.Insert(make_pair(e, 1));}}HashFunc<string> hf;cout << hf("abc") << endl;cout << hf("bac") << endl;cout << hf("cba") << endl;cout << hf("aad") << endl;}}

image-20230227224326693

代码需注意的点:

1.仿函数:考虑到统计出现次数:因为字符串不能够取模,所以我们可以给HashTable增加一个仿函数Hash,其可以将不能取模的类型转成可以取模的类型,同时把string特化出来解决字符串不能取模的问题

2.字符串哈希求法:考虑到顺序问题,比如abc,cba,如果只乘以131则结果是相同的,所以我们可以加上ch在乘以131

3.开散列——开链法

开散列:开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中

image-20230227081506812

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素,不一定要有序

开散列增容问题:

由于桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容。

开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突。

所以在元素个数刚好等于桶的个数时,可以给哈希表增容 。研究分析表明:素数作为哈希表的长度可以尽可能减小哈希冲突。所以可提前定义一个素数表。

4.代码实现

//开散列namespace buckethash{template<class K,class V>struct HashNode{pair<K, V> _kv;HashNode<K, V>* _next;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K,class V,class Hash=HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:HashTable():_n(0){_tables.resize(__stl_next_prime(0));}~HashTable(){for (size_t i = 0; i < _tables.size(); ++i){// 释放Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}if (_tables.size() == _n){                //消耗?/*HashTable<K, V, Hash> newHT;newHT._tables.resize(_tables.size() * 2);for (auto cur : _tables){while (cur){newHT.Insert(cur->_kv);cur = cur->_next;}}_tables.swap(newHT._tables);*/vector<Node*> newTables;newTables.resize(__stl_next_prime(_tables.size()), nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = Hash()(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}size_t hashi = Hash()(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}Node* Find(const K& key){size_t hashi = Hash()(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}else{cur = cur->_next;}}return nullptr;}bool Erase(const K& key){size_t hashi = Hash()(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (cur == _tables[hashi]){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;--_n;return true;}else{prev = cur;cur = cur->_next;}}return false;}inline unsigned long __stl_next_prime(unsigned long n){static const int __stl_num_primes = 28;static const unsigned long __stl_prime_list[__stl_num_primes] ={53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};for (int i = 0; i < __stl_num_primes; ++i){if (__stl_prime_list[i] > n){return __stl_prime_list[i];}}return __stl_prime_list[__stl_num_primes - 1];}private:vector<Node*> _tables;size_t _n = 0;};void TestHT1(){HashTable<int, int> ht;int a[] = { 18, 8, 7, 27, 57, 3, 38, 18,17,88,38,28 };for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(5, 5));ht.Erase(17);ht.Erase(57);}void TestHT2(){string arr[] = { "苹果", "西瓜", "香蕉", "草莓", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };//HashTable<string, int, HashFuncString> countHT;HashTable<string, int> countHT;for (auto& e : arr){auto ret = countHT.Find(e);if (ret){ret->_kv.second++;}else{countHT.Insert(make_pair(e, 1));}}}}

image-20230227230900312


六、结语

开散列与闭散列比较
应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/56957.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1