当前位置:首页 » 《随便一记》 » 正文

2023年highway-env更新之后的使用记录(含DDQN,DuelingDQN,DDQN+OtherChanges) 入门到入土,再踩坑就不玩原神了

29 人参与  2023年04月11日 15:34  分类 : 《随便一记》  评论

点击全文阅读


写在前面

在学习自动驾驶领域上的强化学习过程中,我决定使用highwy-env库建设的模拟器来进行环境构建,但是翻阅了众多教程(包含国内国外)之后,发现教程内容过旧,因为随着2023年的到来,highway-env库也进行了更新,前两年的教程无一例外都使用了老旧版本的函数和返回值。

highway-env是什么东西?

安装方式:(默认最新版)pip install highway-env

首先先列出我发现的新库中的改动:

以前返回值有四个:

        observation, reward, done, info = env.step(action)

现在返回值有五个:

        observation, reward, terminated, truncated, info = env.step(action)

我推测以前的环境数据形式是ndarray数组:

        data = env.reset()

        data = (arragry([[ndarray],[],[],...,[]]),type==dtype32)

现在的环境数据形式是元组:

        data = env.reset()

        data = ((arragry([[ndarray],[],[],...,[]]),type==dtype32,{reward:{},terminated:{},...,})

基于以上改动,那么在代码中的数据处理部分也会相应地发生改变。特别是在使用多个库的时候,需要注意版本关联问题。

参考的一些代码

我的虚拟环境配置:(GPU)

虚拟环境是什么东西?来人,喂它吃九转大肠。

其中必须用到的主要有以下几个:

基于 python 3.8.0

pytorch

gym

highway

tqdm

matplotlib

pygame

numpy

highway-env

使用DoubleDQN算法进行训练,此后还有在此基础上的其他改动。

默认创建python文件double_dqn.py,以下为文件中代码,拼在一起就是完整的。

注释是英文是因为我做的是英文的项目,简单翻译即可。

所使用的库

import osimport copyimport randomimport timeimport numpy as npimport matplotlib.pyplot as pltfrom tqdm import tqdmimport torchimport torch.nn as nnimport torch.nn.functional as Fimport gymimport highway_env

检测设备并初始化默认十字路口环境

# set devicedevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# Author: Da Xuanzi 2023-2-17# Define the environmentenv = gym.make("intersection-v0")# detailsenv.config["duration"] = 13env.config["vehicles_count"] = 20env.config["vehicles_density"] = 1.3env.config["reward_speed_range"] = [7.0, 10.0]env.config["initial_vehicle_count"] = 10env.config["simulation_frequency"] = 15env.config["arrived_reward"] = 2env.reset()

十字路口环境的结构:

env.config{    "observation": {        "type": "Kinematics",        "vehicles_count": 15,        "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],        "features_range": {            "x": [-100, 100],            "y": [-100, 100],            "vx": [-20, 20],            "vy": [-20, 20],        },        "absolute": True,        "flatten": False,        "observe_intentions": False    },    "action": {        "type": "DiscreteMetaAction",        "longitudinal": False,        "lateral": True    },    "duration": 13,  # [s]    "destination": "o1",    "initial_vehicle_count": 10,    "spawn_probability": 0.6,    "screen_width": 600,    "screen_height": 600,    "centering_position": [0.5, 0.6],    "scaling": 5.5 * 1.3,    "collision_reward": IntersectionEnv.COLLISION_REWARD,    "normalize_reward": False}

构建网络

可以自定义隐藏层节点个数

class Net(nn.Module):    def __init__(self, state_dim, action_dim):        # super class        super(Net, self).__init__()        # hidden nodes define        hidden_nodes1 = 1024        hidden_nodes2 = 512        self.fc1 = nn.Linear(state_dim, hidden_nodes1)        self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)        self.fc3 = nn.Linear(hidden_nodes2, action_dim)    def forward(self, state):        # define forward pass of the actor        x = state # state        # Relu function double        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        out = self.fc3(x)        return out

构建学习器

class Replay: # learning    def __init__(self,                 buffer_size, init_length, state_dim, action_dim, env):        self.buffer_size = buffer_size        self.init_length = init_length        self.state_dim = state_dim        self.action_dim = action_dim        self.env = env        self._storage = []        self._init_buffer(init_length)    def _init_buffer(self, n):        # choose n samples state taken from random actions        state = self.env.reset()        for i in range(n):            action = self.env.action_space.sample()            observation, reward, done, truncated, info = self.env.step(action)            # gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit            # observation: numpy array [location]            # reward: reward for *action            # terminated: bool whether end            # truncated: bool whether overflow (from done)            # info: help/log/information            if type(state) == type((1,)):                state = state[0]            # if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item            # because after run env.reset(), the state stores the environmental data and it can not be edited            # we only need the state data -- the first ndarray            exp = {                "state": state,                "action": action,                "reward": reward,                "state_next": observation,                "done": done,            }            self._storage.append(exp)            state = observation            if done:                state = self.env.reset()                done = False    def buffer_add(self, exp):        # exp buffer: {exp}=={        #                 "state": state,        #                 "action": action,        #                 "reward": reward,        #                 "state_next": observation,        #                 "done": terminated,}        self._storage.append(exp)        if len(self._storage) > self.buffer_size:            self._storage.pop(0)  # remove the last one in dict    def buffer_sample(self, n):        # random n samples from exp buffer        return random.sample(self._storage, n)

构建学习对象

PATH = 你的文件夹绝对路径/相对路径

class DOUBLEDQN(nn.Module):    def __init__(        self,            env, # gym environment            state_dim, # state size            action_dim, # action size        lr = 0.001, # learning rate        gamma = 0.99, # discount factor        batch_size = 5, # batch size for each training        timestamp = "",):        # super class        super(DOUBLEDQN, self).__init__()        self.env = env        self.env.reset()        self.timestamp = timestamp        # for evaluation purpose        self.test_env = copy.deepcopy(env)        self.state_dim = state_dim        self.action_dim = action_dim        self.gamma = gamma        self.batch_size = batch_size        self.learn_step_counter = 0        self.is_rend = False        self.target_net = Net(self.state_dim, self.action_dim).to(device)#TODO        self.estimate_net = Net(self.state_dim, self.action_dim).to(device)#TODO        self.ReplayBuffer = Replay(1000, 100, self.state_dim, self.action_dim, env)#TODO        self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)    def choose_our_action(self, state, epsilon = 0.9):        # greedy strategy for choosing action        # state: ndarray environment state        # epsilon: float in [0,1]        # return: action we chosen        # turn to 1D float tensor -> [[a1,a2,a3,...,an]]        # we have to increase the speed of transformation ndarray to tensor if not it will spend a long time to train the model        # ndarray[[ndarray],...[ndarray]] => list[[ndarray],...[ndarray]] => ndarray[...] => tensor[...]        if type(state) == type((1,)):            state = state[0]        temp = [exp for exp in state]        target = []        target = np.array(target)        # n dimension to 1 dimension ndarray        for i in temp:            target = np.append(target,i)        state = torch.FloatTensor(target).to(device)        # randn() return a set of samples which are Gaussian distribution        # no argments -> return a float number        if np.random.randn() <= epsilon:            # when random number smaller than epsilon: do these things            # put a state array into estimate net to obtain their value array            # choose max values in value array -> obtain action            action_value = self.estimate_net(state)            action = torch.argmax(action_value).item()        else:            # when random number bigger than epsilon: randomly choose a action            action = np.random.randint(0, self.action_dim)        return action    def train(self, num_episode):        # num_eposide: total turn number for train        loss_list = [] # loss set        avg_reward_list = [] # reward set        episode_reward = 0        rend = 0        # tqdm : a model for showing process bar        for episode in tqdm(range(1,int(num_episode)+1)):            done = False            state = self.env.reset()            each_loss = 0            step = 0            if type(state) == type((1,)):                state = state[0]            while not done:                if self.is_rend:                    self.env.render()                step +=1                action = self.choose_our_action(state)                observation, reward, done, truncated, info = self.env.step(action)                exp = {                    "state": state,                    "action": action,                    "reward": reward,                    "state_next": observation,                    "done": done,                }                self.ReplayBuffer.buffer_add(exp)                state = observation                # sample random batch in replay memory                exp_batch = self.ReplayBuffer.buffer_sample(self.batch_size)                # extract batch data                action_batch = torch.LongTensor(                    [exp["action"] for exp in exp_batch]                ).to(device)                reward_batch = torch.FloatTensor(                    [exp["reward"] for exp in exp_batch]                ).to(device)                done_batch = torch.FloatTensor(                    [1 - exp["done"] for exp in exp_batch]                ).to(device)                # Slow method -> Fast method when having more data                state_next_temp = [exp["state_next"] for exp in exp_batch]                state_temp = [exp["state"] for exp in exp_batch]                state_temp_list = np.array(state_temp)                state_next_temp_list = np.array(state_next_temp)                state_next_batch = torch.FloatTensor(state_next_temp_list).to(device)                state_batch = torch.FloatTensor(state_temp_list).to(device)                # reshape                state_batch = state_batch.reshape(self.batch_size, -1)                action_batch = action_batch.reshape(self.batch_size, -1)                reward_batch = reward_batch.reshape(self.batch_size, -1)                state_next_batch = state_next_batch.reshape(self.batch_size, -1)                done_batch = done_batch.reshape(self.batch_size, -1)                # obtain estimate Q value gather(dim, index) dim==1:column index                estimate_Q_value = self.estimate_net(state_batch).gather(1, action_batch)                # obtain target Q value detach:remove the matched element                max_action_index = self.estimate_net(state_next_batch).detach().argmax(1)                target_Q_value = reward_batch + done_batch * self.gamma * self.target_net(                    state_next_batch                ).gather(1, max_action_index.unsqueeze(1))# squeeze(1) n*1->1*1, unsqueeze(1) 1*1->n*1                # mse_loss: mean loss                loss = F.mse_loss(estimate_Q_value, target_Q_value)                each_loss += loss.item()                # update network                self.optimizer.zero_grad()                loss.backward()                self.optimizer.step()                # update target network                # load parameters into model                if self.learn_step_counter % 10 == 0:                    self.target_net.load_state_dict(self.estimate_net.state_dict())                self.learn_step_counter +=1            reward, count = self.eval()            episode_reward += reward            # you can update these variables            if episode_reward % 100 == 0:                rend += 1                if rend % 5 == 0:                    self.is_rend = True                else:                    self.is_rend = False            # save            period = 1            if episode % period == 0:                each_loss /= step                episode_reward /= period                avg_reward_list.append(episode_reward)                loss_list.append(each_loss)                print("\nepisode:[{}/{}], \t each_loss: {:.4f}, \t eposide_reward: {:.3f}, \t step: {}".format(                    episode, num_episode, each_loss, episode_reward, count                ))                # episode_reward = 0                # create a new directory for saving                path = PATH + "/" + self.timestamp                try:                    os.makedirs(path)                except OSError:                    pass                # saving as timestamp file                np.save(path + "/DOUBLE_DQN_LOSS.npy", loss_list)                np.save(path + "/DOUBLE_DQN_EACH_REWARD.npy", avg_reward_list)                torch.save(self.estimate_net.state_dict(), path + "/DOUBLE_DQN_params.pkl")        self.env.close()        return loss_list, avg_reward_list    def eval(self):        # evaluate the policy        count = 0        total_reward = 0        done = False        state = self.test_env.reset()        if type(state) == type((1,)):            state = state[0]             while not done:            action = self.choose_our_action(state, epsilon = 1)            observation, reward, done, truncated, info = self.test_env.step(action)            total_reward += reward            count += 1            state = observation        return total_reward, count

构建运行函数

超参数可以自己设置 lr gamma

if __name__ == "__main__":    # timestamp    named_tuple = time.localtime()    time_string = time.strftime("%Y-%m-%d-%H-%M", named_tuple)    print(time_string)    # create a doubledqn object    double_dqn_object = DOUBLEDQN(        env,        state_dim=105,        action_dim=3,        lr=0.001,        gamma=0.99,        batch_size=64,        timestamp=time_string,    )    # your chosen train times    iteration = 20    # start training    avg_loss, avg_reward_list = double_dqn_object.train(iteration)    path = PATH + "/" + time_string    np.save(path + "/DOUBLE_DQN_LOSS.npy", avg_loss)    np.save(path + "/DOUBLE_DQN_EACH_REWARD.npy", avg_reward_list)    torch.save(double_dqn_object.estimate_net.state_dict(), path + "/DOUBLE_DQN_params.pkl")    torch.save(double_dqn_object.state_dict(), path + "/DOUBLE_DQN_MODEL.pt")

使用数据进行绘制图片

新建文件draw_figures.py

?处自己替换成自己的路径

import matplotlib.pyplot as pltimport numpy as npLoss = r"?\?\DOUBLE_DQN_LOSS.npy"Reward = r"?\?\DOUBLE_DQN_EACH_REWARD.npy"avg_loss = np.load(Loss)avg_reward_list = np.load(Reward)# print("loss", avg_loss)# print("reward", avg_reward_list)plt.figure(figsize=(10, 6))plt.plot(avg_loss)plt.grid()plt.title("Double DQN Loss")plt.xlabel("epochs")plt.ylabel("loss")plt.savefig(r"?\figures\double_dqn_loss.png", dpi=150)plt.show()plt.figure(figsize=(10, 6))plt.plot(avg_reward_list)plt.grid()plt.title("Double DQN Training Reward")plt.xlabel("epochs")plt.ylabel("reward")plt.savefig(r"?\figures\double_dqn_train_reward.png", dpi=150)plt.show()

提纳里手动分割线

Dueling_DQN

以上基本稍作改动即可

class Net(nn.Module):    def __init__(self, state_dim, action_dim):        """        Initialize the network        : param state_dim: int, size of state space        : param action_dim: int, size of action space        """        super(Net, self).__init__()        hidden_nodes1 = 1024        hidden_nodes2 = 512        self.fc1 = nn.Linear(state_dim, hidden_nodes1)        self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)        self.fc3 = nn.Linear(hidden_nodes2, action_dim + 1)    def forward(self, state):        """        Define the forward pass of the actor        : param state: ndarray, the state of the environment        """        x = state        # print(x.shape)        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        out = self.fc3(x)        return outclass Replay: # learning    def __init__(self,                 buffer_size, init_length, state_dim, action_dim, env):        self.buffer_size = buffer_size        self.init_length = init_length        self.state_dim = state_dim        self.action_dim = action_dim        self.env = env        self._storage = []        self._init_buffer(init_length)    def _init_buffer(self, n):        # choose n samples state taken from random actions        state = self.env.reset()        for i in range(n):            action = self.env.action_space.sample()            observation, reward, done, truncated, info = self.env.step(action)            # gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit            # observation: numpy array [location]            # reward: reward for *action            # terminated: bool whether end            # truncated: bool whether overflow (from done)            # info: help/log/information            if type(state) == type((1,)):                state = state[0]            # if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item            # because after run env.reset(), the state stores the environmental data and it can not be edited            # we only need the state data -- the first ndarray            exp = {                "state": state,                "action": action,                "reward": reward,                "state_next": observation,                "done": done,            }            self._storage.append(exp)            state = observation            if done:                state = self.env.reset()                done = False    def buffer_add(self, exp):        # exp buffer: {exp}=={        #                 "state": state,        #                 "action": action,        #                 "reward": reward,        #                 "state_next": observation,        #                 "done": terminated,}        self._storage.append(exp)        if len(self._storage) > self.buffer_size:            self._storage.pop(0)  # remove the last one in dict    def buffer_sample(self, n):        # random n samples from exp buffer        return random.sample(self._storage, n)class DUELDQN(nn.Module):    def __init__(        self,        env,        state_dim,        action_dim,        lr=0.001,        gamma=0.99,        batch_size=5,        timestamp="",    ):        """        : param env: object, a gym environment        : param state_dim: int, size of state space        : param action_dim: int, size of action space        : param lr: float, learning rate        : param gamma: float, discount factor        : param batch_size: int, batch size for training        """        super(DUELDQN, self).__init__()        self.env = env        self.env.reset()        self.timestamp = timestamp        self.test_env = copy.deepcopy(env)  # for evaluation purpose        self.state_dim = state_dim        self.action_dim = action_dim        self.gamma = gamma        self.batch_size = batch_size        self.learn_step_counter = 0        self.is_rend =False        self.target_net = Net(self.state_dim, self.action_dim).to(device)        self.estimate_net = Net(self.state_dim, self.action_dim).to(device)        self.ReplayBuffer = Replay(1000, 100, self.state_dim, self.action_dim, env)        self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)    def choose_action(self, state, epsilon=0.9):        # greedy strategy for choosing action        # state: ndarray environment state        # epsilon: float in [0,1]        # return: action we chosen        # turn to 1D float tensor -> [[a1,a2,a3,...,an]]        # we have to increase the speed of transformation ndarray to tensor if not it will spend a long time to train the model        # ndarray[[ndarray],...[ndarray]] => list[[ndarray],...[ndarray]] => ndarray[...] => tensor[...]        if type(state) == type((1,)):            state = state[0]        temp = [exp for exp in state]        target = []        target = np.array(target)        # n dimension to 1 dimension ndarray        for i in temp:            target = np.append(target, i)        state = torch.FloatTensor(target).to(device)        # randn() return a set of samples which are Gaussian distribution        # no argments -> return a float number        if np.random.randn() <= epsilon:            # when random number smaller than epsilon: do these things            # put a state array into estimate net to obtain their value array            # choose max values in value array -> obtain action            action_value = self.estimate_net(state)            action_value = action_value[:-1]            action = torch.argmax(action_value).item()        else:            # when random number bigger than epsilon: randomly choose a action            action = np.random.randint(0, self.action_dim)        return action    def calculate_duelling_q_values(self, duelling_q_network_output):        """        Calculate the Q values using the duelling network architecture. This is equation (9) in the paper.        :param duelling_q_network_output: tensor, output of duelling q network        :return: Q values        """        state_value = duelling_q_network_output[:, -1]        avg_advantage = torch.mean(duelling_q_network_output[:, :-1], dim=1)        q_values = state_value.unsqueeze(1) + (            duelling_q_network_output[:, :-1] - avg_advantage.unsqueeze(1)        )        return q_values    def train(self, num_episode):        # num_eposide: total turn number for train        loss_list = [] # loss set        avg_reward_list = [] # reward set        episode_reward = 0        # tqdm : a model for showing process bar        for episode in tqdm(range(1,int(num_episode)+1)):            done = False            state = self.env.reset()            each_loss = 0            step = 0            if type(state) == type((1,)):                state = state[0]            while not done:                if self.is_rend:                    self.env.render()                step += 1                action = self.choose_action(state)                observation, reward, done, truncated, info = self.env.step(action)                exp = {                    "state": state,                    "action": action,                    "reward": reward,                    "state_next": observation,                    "done": done,                }                self.ReplayBuffer.buffer_add(exp)                state = observation                # sample random batch in replay memory                exp_batch = self.ReplayBuffer.buffer_sample(self.batch_size)                # extract batch data                action_batch = torch.LongTensor(                    [exp["action"] for exp in exp_batch]                ).to(device)                reward_batch = torch.FloatTensor(                    [exp["reward"] for exp in exp_batch]                ).to(device)                done_batch = torch.FloatTensor(                    [1 - exp["done"] for exp in exp_batch]                ).to(device)                # Slow method -> Fast method when having more data                state_next_temp = [exp["state_next"] for exp in exp_batch]                state_temp = [exp["state"] for exp in exp_batch]                state_temp_list = np.array(state_temp)                state_next_temp_list = np.array(state_next_temp)                state_next_batch = torch.FloatTensor(state_next_temp_list).to(device)                state_batch = torch.FloatTensor(state_temp_list).to(device)                # reshape                state_batch = state_batch.reshape(self.batch_size, -1)                action_batch = action_batch.reshape(self.batch_size, -1)                reward_batch = reward_batch.reshape(self.batch_size, -1)                state_next_batch = state_next_batch.reshape(self.batch_size, -1)                done_batch = done_batch.reshape(self.batch_size, -1)                # get estimate Q value                estimate_net_output = self.estimate_net(state_batch)                estimate_Q = self.calculate_duelling_q_values(estimate_net_output)                estimate_Q = estimate_Q.gather(1, action_batch)                # get target Q value                max_action_idx = (                    self.estimate_net(state_next_batch)[:, :-1].detach().argmax(1)                )                target_net_output = self.target_net(state_next_batch)                target_Q = self.calculate_duelling_q_values(target_net_output).gather(                    1, max_action_idx.unsqueeze(1)                )                target_Q = reward_batch + done_batch * self.gamma * target_Q                # compute mse loss                loss = F.mse_loss(estimate_Q, target_Q)                each_loss += loss.item()                # update network                self.optimizer.zero_grad()                loss.backward()                self.optimizer.step()                # update target network                if self.learn_step_counter % 10 == 0:                    self.target_net.load_state_dict(self.estimate_net.state_dict())                self.learn_step_counter += 1            reward, count = self.eval()            episode_reward += reward            # save            period = 1            if episode % period == 0:                each_loss /= step                episode_reward /= period                avg_reward_list.append(episode_reward)                loss_list.append(each_loss)                print("\nepisode:[{}/{}], \t each_loss: {:.4f}, \t eposide_reward: {:.3f}, \t step: {}".format(                    episode, num_episode, each_loss, episode_reward, count                ))                # epoch_reward = 0                path = PATH + "/" + self.timestamp                # create a new directory for saving                try:                    os.makedirs(path)                except OSError:                    pass                np.save(path + "/DUELING_DQN_LOSS.npy", loss_list)                np.save(path + "/DUELING_DQN_EACH_REWARD.npy", avg_reward_list)                torch.save(self.estimate_net.state_dict(), path + "/DUELING_DQN_params.pkl")        self.env.close()        return loss_list, avg_reward_list    def eval(self):        # evaluate the policy        count = 0        total_reward = 0        done = False        state = self.test_env.reset()        if type(state) == type((1,)):            state = state[0]        while not done:            action = self.choose_action(state, epsilon=1)            state_next, reward, done, _, info = self.test_env.step(action)            total_reward += reward            count += 1            state = state_next        return total_reward, countif __name__ == "__main__":    # timestamp for saving    named_tuple = time.localtime()  # get struct_time    time_string = time.strftime(        "%Y-%m-%d-%H-%M", named_tuple    )  # have a folder of "date+time ex: 1209_20_36 -> December 12th, 20:36"    duel_dqn_object = DUELDQN(        env,        state_dim=105,        action_dim=3,        lr=0.001,        gamma=0.99,        batch_size=64,        timestamp=time_string,    )    path = PATH + "/" + time_string    # Train the policy    iterations = 10    avg_loss, avg_reward_list = duel_dqn_object.train(iterations)    np.save(path + "/DUELING_DQN_LOSS.npy", avg_loss)    np.save(path + "/DUELING_DQN_EACH_REWARD.npy", avg_reward_list)    torch.save(duel_dqn_object.estimate_net.state_dict(), path + "/DUELING_DQN_params.pkl")    torch.save(duel_dqn_object.state_dict(), path + "/DUELING_DQN_MODEL.pt")

DDQN+OtherChanges

三层2D卷积

# add CNN structureclass Net(nn.Module):    def __init__(self, state_dim, action_dim):        # initalize the network        # state_dim: state space        # action_dim: action space        super(Net, self).__init__()        # nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)        # in_channel : input size = in_channels * in_N * in_N        # out_channel : define        # kernel_size : rules or define        # stride: step length        # padding: padding size        # out_N = (in_N - Kernel_size + 2 * Padding)/ Stride +1        self.cnn = nn.Sequential(            # the first 2D convolutional layer            nn.Conv2d(1, 4, kernel_size=3, padding=1),            nn.BatchNorm2d(4),            nn.ReLU(inplace=True),            nn.MaxPool2d(kernel_size=3, stride=1),            # the second 2D convolutional layer            nn.Conv2d(4, 8, kernel_size=3, padding=1),            nn.BatchNorm2d(8),            nn.ReLU(inplace=True),            nn.MaxPool2d(kernel_size=3, stride=1),            # the third 2D convolutional layer ---- my test and try or more convolutional layers            nn.Conv2d(8, 4, kernel_size=3, padding=1),            nn.BatchNorm2d(4),            nn.ReLU(inplace=True),            nn.MaxPool2d(kernel_size=3, stride=1),        )        hidden_nodes1 = 1024        hidden_nodes2 = 512        self.fc1 = nn.Linear(4 * 1 * 9, hidden_nodes1)        self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)        self.fc3 = nn.Linear(hidden_nodes2, action_dim)    def forward(self, state):        # define forward pass of the actor        x = state # state        x = self.cnn(x)        x = x.view(x.size(0), -1)        # Relu function double        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        out = self.fc3(x)        return outclass Replay:    def __init__(self, buffer_size, init_length, state_dim, action_dim, env):        self.buffer_size = buffer_size        self.init_length = init_length        self.state_dim = state_dim        self.action_dim = action_dim        self.env = env        self._storage = []        self._init_buffer(init_length)    def _init_buffer(self, n):        # choose n samples state taken from random actions        state = self.env.reset()        for i in range(n):            action = self.env.action_space.sample()            observation, reward, done, truncated, info = self.env.step(action)            # gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit            # observation: numpy array [location]            # reward: reward for *action            # terminated: bool whether end            # truncated: bool whether overflow (from done)            # info: help/log/information            if type(state) == type((1,)):                state = state[0]            # if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item            # because after run env.reset(), the state stores the environmental data and it can not be edited            # we only need the state data -- the first ndarray            exp = {                "state": state,                "action": action,                "reward": reward,                "state_next": observation,                "done": done,            }            self._storage.append(exp)            state = observation            if done:                state = self.env.reset()                done = False    def buffer_add(self, exp):        # exp buffer: {exp}=={        #                 "state": state,        #                 "action": action,        #                 "reward": reward,        #                 "state_next": observation,        #                 "done": terminated,}        self._storage.append(exp)        if len(self._storage) > self.buffer_size:            self._storage.pop(0) # remove the last one in dict    def buffer_sample(self, N):        # random n samples from exp buffer        return random.sample(self._storage, N)class DOUBLEDQN_CNN(nn.Module):    def __init__(        self,            env,  # gym environment            state_dim,  # state size            action_dim,  # action size            lr=0.001,  # learning rate            gamma=0.99,  # discount factor            batch_size=5,  # batch size for each training            timestamp="", ):        # super class        super(DOUBLEDQN_CNN, self).__init__()        self.env = env        self.env.reset()        self.timestamp = timestamp        # for evaluation purpose        self.test_env = copy.deepcopy(env)        self.state_dim = state_dim        self.action_dim = action_dim        self.gamma = gamma        self.batch_size = batch_size        self.learn_step_counter = 0        self.is_rend = False        self.target_net = Net(self.state_dim, self.action_dim).to(device)        self.estimate_net = Net(self.state_dim, self.action_dim).to(device)        self.ReplayBuffer = Replay(1000, 100, self.state_dim, self.action_dim, env)        self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)    def choose_action(self, state, epsilon=0.9):        # greedy strategy for choosing action        # state: ndarray environment state        # epsilon: float in [0,1]        # return: action we chosen        # turn to 1D float tensor -> [[a1,a2,a3,...,an]]        # we have to increase the speed of transformation ndarray to tensor if not it will spend a long time to train the model        # ndarray[[ndarray],...[ndarray]] => list[[ndarray],...[ndarray]] => ndarray[...] => tensor[...]        if type(state) == type((1,)):            state = state[0]        #TODO        state = (            torch.FloatTensor(state).to(device).reshape(-1, 1, 7, self.state_dim // 7)        )        if np.random.randn() <= epsilon:            action_value = self.estimate_net(state)            action = torch.argmax(action_value).item()        else:            action = np.random.randint(0, self.action_dim)        return action    def train(self, num_episode):        # num_eposide: total turn number for train        count_list = []        loss_list = []        total_reward_list = []        avg_reward_list = []        episode_reward = 0        rend = 0        for episode in tqdm(range(1,int(num_episode)+1)):            done = False            state = self.env.reset()            each_loss = 0            step = 0            if type(state) == type((1,)):                state = state[0]            while not done:                if self.is_rend:                    self.env.render()                step += 1                action = self.choose_action(state)                observation, reward, done, truncated, info = self.env.step(action)                exp = {                    "state": state,                    "action": action,                    "reward": reward,                    "state_next": observation,                    "done": done,                }                self.ReplayBuffer.buffer_add(exp)                state = observation                # sample random batch from replay memory                exp_batch = self.ReplayBuffer.buffer_sample(self.batch_size)                # extract batch data                action_batch = torch.LongTensor([exp["action"] for exp in exp_batch])                reward_batch = torch.FloatTensor([exp["reward"] for exp in exp_batch])                done_batch = torch.FloatTensor([1 - exp["done"] for exp in exp_batch])                # Slow method -> Fast method when having more data                state_next_temp = [exp["state_next"] for exp in exp_batch]                state_temp = [exp["state"] for exp in exp_batch]                state_temp_list = np.array(state_temp)                state_next_temp_list = np.array(state_next_temp)                state_next_batch = torch.FloatTensor(state_next_temp_list)                state_batch = torch.FloatTensor(state_temp_list)                # reshape                state_batch = state_batch.to(device).reshape(                    self.batch_size, 1, 7, self.state_dim // 7                )                action_batch = action_batch.to(device).reshape(self.batch_size, -1)                reward_batch = reward_batch.to(device).reshape(self.batch_size, -1)                state_next_batch = state_next_batch.to(device).reshape(                    self.batch_size, 1, 7, self.state_dim // 7                )                done_batch = done_batch.to(device).reshape(self.batch_size, -1)                # get estimate Q value                estimate_Q = self.estimate_net(state_batch).gather(1, action_batch)                # get target Q value                max_action_idx = self.estimate_net(state_next_batch).detach().argmax(1)                target_Q = reward_batch + done_batch * self.gamma * self.target_net(                    state_next_batch                ).gather(1, max_action_idx.unsqueeze(1))                # compute mse loss                loss = F.mse_loss(estimate_Q, target_Q)                each_loss += loss.item()                # update network                self.optimizer.zero_grad()                loss.backward()                self.optimizer.step()                # update target network                if self.learn_step_counter % 10 == 0:                    self.target_net.load_state_dict(self.estimate_net.state_dict())                self.learn_step_counter += 1            reward, count = self.eval()            episode_reward += reward            # you can update these variables            if episode_reward % 100 == 0:                rend += 1                if rend % 5 == 0:                    self.is_rend = True                else:                    self.is_rend = False            # save            period = 1            if episode % period == 0:                each_loss /= step                episode_reward /= period                avg_reward_list.append(episode_reward)                loss_list.append(each_loss)                print("\nepisode:[{}/{}], \t each_loss: {:.4f}, \t eposide_reward: {:.3f}, \t step: {}".format(                    episode, num_episode, each_loss, episode_reward, count                ))                # epoch_reward = 0                # create a new directory for saving                path = PATH + "/" + self.timestamp                try:                    os.makedirs(path)                except OSError:                    pass                # saving as timestamp file                np.save(path + "/DOUBLE_DQN_CNN_LOSS.npy", loss_list)                np.save(path + "/DOUBLE_DQN_CNN_EACH_REWARD.npy", avg_reward_list)                torch.save(self.estimate_net.state_dict(), path + "/DOUBLE_DQN_CNN_params.pkl")        self.env.close()        return loss_list, avg_reward_list    def eval(self):        # evaluate the policy        count = 0        total_reward = 0        done = False        state = self.test_env.reset()        if type(state) == type((1,)):            state = state[0]        while not done:            action = self.choose_action(state, epsilon=1)            observation, reward, done, truncated, info = self.test_env.step(action)            total_reward += reward            count += 1            state = observation        return total_reward, countif __name__ == "__main__":    # timestamp    named_tuple = time.localtime()    time_string = time.strftime("%Y-%m-%d-%H-%M", named_tuple)    print(time_string)    # create a doubledqn object    double_dqn_cnn_object = DOUBLEDQN_CNN(        env,        state_dim=105,        action_dim=3,        lr=0.001,        gamma=0.99,        batch_size=64,        timestamp=time_string,    )    # your chosen train times    iteration = 20    # start training    avg_loss, avg_reward_list = double_dqn_cnn_object.train(iteration)    path = PATH + "/" + time_string    np.save(path + "/DOUBLE_DQN_CNN_LOSS.npy", avg_loss)    np.save(path + "/DOUBLE_DQN_CNN_EACH_REWARD.npy", avg_reward_list)    torch.save(double_dqn_cnn_object.estimate_net.state_dict(), path + "/DOUBLE_DQN_CNN_params.pkl")    torch.save(double_dqn_cnn_object.state_dict(), path + "/DOUBLE_DQN_CNN_MODEL.pt")

经验池

class Net(nn.Module):    def __init__(self, state_dim, action_dim):        # state_dim: state space        # action_dim: action space        super(Net, self).__init__()        hidden_nodes1 = 1024        hidden_nodes2 = 512        self.fc1 = nn.Linear(state_dim, hidden_nodes1)        self.fc2 = nn.Linear(hidden_nodes1, hidden_nodes2)        self.fc3 = nn.Linear(hidden_nodes2, action_dim)    def forward(self, state):        # state: ndarray        x = state        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        out = self.fc3(x)        return out# Priortized_Replayclass Prioritized_Replay:    def __init__(        self,        buffer_size,        init_length,        state_dim,        action_dim,        est_Net,        tar_Net,        gamma,    ):        # state_dim: state space        # action_dim: action space        # env: env        self.buffer_size = buffer_size        self.init_length = init_length        self.state_dim = state_dim        self.action_dim = action_dim        self.gamma = gamma        self.is_rend = False        self.priority = deque(maxlen=buffer_size)        self._storage = []        self._init_buffer(init_length, est_Net, tar_Net)    def _init_buffer(self, n, est_Net, tar_Net):        # n: sample number        state = env.reset()        for i in range(n):            action = env.action_space.sample()            observation, reward, done, truncated, info = env.step(action)            # gym.env.step(action): tuple (obversation, reward, terminated, truncated, info) can edit            # observation: numpy array [location]            # reward: reward for *action            # terminated: bool whether end            # truncated: bool whether overflow (from done)            # info: help/log/information            if type(state) == type((1,)):                state = state[0]            # if state is tuple (ndarray[[],[],...,[]],{"speed":Float,"cashed":Bool,"action":Int,"reward":dict,"agent-reward":Float[],"agent-done":Bool}),we take its first item            # because after run env.reset(), the state stores the environmental data and it can not be edited            # we only need the state data -- the first ndarray            exp = {                "state": state,                "action": action,                "reward": reward,                "state_next": observation,                "done": done,            }            self.prioritize(est_Net, tar_Net, exp, alpha=0.6)            self._storage.append(exp)            state = observation            if done:                state = env.reset()                done = False    def buffer_add(self, exp):        # exp buffer: {exp}=={        #                 "state": state,        #                 "action": action,        #                 "reward": reward,        #                 "state_next": observation,        #                 "done": terminated,}        self._storage.append(exp)        if len(self._storage) > self.buffer_size:            self._storage.pop(0)    # add prioritize    def prioritize(self, est_Net, tar_Net, exp, alpha=0.6):        state = torch.FloatTensor(exp["state"]).to(device).reshape(-1)        q = est_Net(state)[exp["action"]].detach().cpu().numpy()        q_next = exp["reward"] + self.gamma * torch.max(est_Net(state).detach())        # TD error        p = (np.abs(q_next.cpu().numpy() - q) + (np.e ** -10)) ** alpha        self.priority.append(p.item())    def get_prioritized_batch(self, N):        prob = self.priority / np.sum(self.priority)        # random.choices(list,weights=None,*,cum_weights=None,k=1)        # weight: set the chosen item rate        # k: times for choice        # cum_weight: sum of weight        sample_idxes = random.choices(range(len(prob)), k=N, weights=prob)        importance = (1 / prob) * (1 / len(self.priority))        sampled_importance = np.array(importance)[sample_idxes]        sampled_batch = np.array(self._storage)[sample_idxes]        return sampled_batch.tolist(), sampled_importance    def buffer_sample(self, N):        # random n samples from exp buffer        return random.sample(self._storage, N)class DDQNPB(nn.Module):    def __init__(        self,        env,        state_dim,        action_dim,        lr=0.001,        gamma=0.99,        buffer_size=1000,        batch_size=50,        beta=1,        beta_decay=0.995,        beta_min=0.01,        timestamp="",    ):        # env: environment        # state_dim: state space        # action_dim: action space        # lr: learning rate        # gamma: loss/discount factor        # batch_size: training batch size        super(DDQNPB, self).__init__()        self.timestamp = timestamp        self.test_env = copy.deepcopy(env)  # for evaluation purpose        self.state_dim = state_dim        self.action_dim = action_dim        self.gamma = gamma        self.batch_size = batch_size        self.learn_step_counter = 0        self.target_net = Net(self.state_dim, self.action_dim).to(device)        self.estimate_net = Net(self.state_dim, self.action_dim).to(device)        self.optimizer = torch.optim.Adam(self.estimate_net.parameters(), lr=lr)        self.ReplayBuffer = Prioritized_Replay(            buffer_size,            100,            self.state_dim,            self.action_dim,            self.estimate_net,            self.target_net,            gamma,        )        self.priority = self.ReplayBuffer.priority        # NOTE: right here beta is equal to (1-beta) in most of website articles, notation difference        # start from 1 and decay        self.beta = beta        self.beta_decay = beta_decay        self.beta_min = beta_min    def choose_action(self, state, epsilon=0.9):        # state: env state        # epsilon: [0,1]        # return action you choose        # get a 1D array        if type(state) == type((1,)):            state = state[0]        temp = [exp for exp in state]        target = []        target = np.array(target)        # n dimension to 1 dimension ndarray        for i in temp:            target = np.append(target, i)        state = torch.FloatTensor(target).to(device)        if np.random.randn() <= epsilon:            action_value = self.estimate_net(state)            action = torch.argmax(action_value).item()        else:            action = np.random.randint(0, self.action_dim)        return action    def train(self, num_episode):        # num_epochs: training times        loss_list = []        avg_reward_list = []        episode_reward = 0        for episode in tqdm(range(1,int(num_episode)+1)):            done = False            state = env.reset()            each_loss = 0            step = 0            rend = 0            if type(state) == type((1,)):                state = state[0]            while not done:                action = self.choose_action(state)                observation, reward, done, _, info = env.step(action)                # self.env.render()                # store experience to replay memory                exp = {                    "state": state,                    "action": action,                    "reward": reward,                    "state_next": observation,                    "done": done,                }                self.ReplayBuffer.buffer_add(exp)                state = observation                # importance weighting                if self.beta > self.beta_min:                    self.beta *= self.beta_decay                # sample random batch from replay memory                exp_batch, importance = self.ReplayBuffer.get_prioritized_batch(                    self.batch_size                )                importance = torch.FloatTensor(importance ** (1 - self.beta)).to(device)                # extract batch data                action_batch = torch.LongTensor(                    [exp["action"] for exp in exp_batch]                ).to(device)                reward_batch = torch.FloatTensor(                    [exp["reward"] for exp in exp_batch]                ).to(device)                done_batch = torch.FloatTensor(                    [1 - exp["done"] for exp in exp_batch]                ).to(device)                # Slow method -> Fast method when having more data                state_next_temp = [exp["state_next"] for exp in exp_batch]                state_temp = [exp["state"] for exp in exp_batch]                state_temp_list = np.array(state_temp)                state_next_temp_list = np.array(state_next_temp)                state_next_batch = torch.FloatTensor(state_next_temp_list).to(device)                state_batch = torch.FloatTensor(state_temp_list).to(device)                # reshape                state_batch = state_batch.reshape(self.batch_size, -1)                action_batch = action_batch.reshape(self.batch_size, -1)                reward_batch = reward_batch.reshape(self.batch_size, -1)                state_next_batch = state_next_batch.reshape(self.batch_size, -1)                done_batch = done_batch.reshape(self.batch_size, -1)                # get estimate Q value                estimate_Q = self.estimate_net(state_batch).gather(1, action_batch)                # get target Q value                max_action_idx = self.estimate_net(state_next_batch).detach().argmax(1)                target_Q = reward_batch + done_batch * self.gamma * self.target_net(                    state_next_batch                ).gather(1, max_action_idx.unsqueeze(1))                # compute mse loss                # loss = F.mse_loss(estimate_Q, target_Q)                loss = torch.mean(                    torch.multiply(torch.square(estimate_Q - target_Q), importance)                )                each_loss += loss.item()                # update network                self.optimizer.zero_grad()                loss.backward()                self.optimizer.step()                #TODO                # update target network                if self.learn_step_counter % 10 == 0:                    # self.update_target_networks()                    self.target_net.load_state_dict(self.estimate_net.state_dict())                self.learn_step_counter += 1                step += 1                env.render()                # you can update these variables                # if episode_reward % 100 == 0:                #     rend += 1                #     if rend % 5 == 0:                #         self.is_rend = True                #     else:                #         self.is_rend = False            reward, count = self.eval()            episode_reward += reward            # save            period = 1            if episode % period == 0:                # log                each_loss /= period                episode_reward /= period                avg_reward_list.append(episode_reward)                loss_list.append(each_loss)                print(                    "\nepoch: [{}/{}], \tavg loss: {:.4f}, \tavg reward: {:.3f}, \tsteps: {}".format(                        episode, num_episode, each_loss, episode_reward, count                    )                )                # episode_reward = 0                # create a new directory for saving                path = PATH + "/" + self.timestamp                try:                    os.makedirs(path)                except OSError:                    pass                np.save(path + "/DOUBLE_DQN_PRIORITIZED_LOSS.npy", loss_list)                np.save(path + "/DOUBLE_DQN_PRIORITIZED_REWARD.npy", avg_reward_list)                torch.save(self.estimate_net.state_dict(),path + "/DOUBLE_DQN_PRIORITIZED_params.pkl")        env.close()        return loss_list, avg_reward_list    def eval(self):        """        Evaluate the policy        """        count = 0        total_reward = 0        done = False        state = self.test_env.reset()        if type(state) == type((1,)):            state = state[0]        while not done:            action = self.choose_action(state, epsilon=1)            observation, reward, done, truncated, info = self.test_env.step(action)            total_reward += reward            count += 1            state = observation        return total_reward, countif __name__ == "__main__":    # timestamp for saving    named_tuple = time.localtime()  # get struct_time    time_string = time.strftime("%Y-%m-%d-%H-%M", named_tuple)    double_dqn_prioritized_object = DDQNPB(        env,        state_dim=105,        action_dim=3,        lr=0.001,        gamma=0.99,        buffer_size=1000,        batch_size=64,        timestamp=time_string,    )    # Train the policy    iterations = 10000    avg_loss, avg_reward_list = double_dqn_prioritized_object.train(iterations)    path = PATH + "/" + time_string    np.save(path + "/DOUBLE_DQN_PRIORITIZED_LOSS.npy", avg_loss)    np.save(path + "/DOUBLE_DQN_PRIORITIZED_REWARD.npy", avg_reward_list)    torch.save(double_dqn_prioritized_object.estimate_net.state_dict(), path + "/DOUBLE_DQN_PRIORITIZED_params.pkl")    torch.save(double_dqn_prioritized_object.state_dict(), path + "/DOUBLE_DQN_PRIORITIZED_MODEL.pt")

有些东西可以自己改掉,自己调出的bug才是好bug!(大雾)

写在后面:

关于自定义环境,刚刚花30分钟研究了一下,官方写的教程稀烂(狗头),我自己得到的攻略如下:

找到你的highway-env安装包位置,我的在:E:\formalFiles\Anaconda3-2020.07\envs\autodrive_38\Lib\site-packages\highway_env在highway-env里的envs可以看到多个场景的定义文件,此处拿出intersection_env.py举例,其他的同理。新建一个文件test_env.py,把intersection_env.py的所有内容复制粘贴到里面。

在test_env.py里,重命名如下:
class test(AbstractEnv):    #    # ACTIONS: Dict[int, str] = {    #     0: 'SLOWER',    #     1: 'IDLE',    #     2: 'FASTER'    # }    ACTIONS: Dict[int, str] = {        0: 'LANE_LEFT',        1: 'IDLE',        2: 'LANE_RIGHT',        3: 'FASTER',        4: 'SLOWER'    }

删除除了第一个class以外的所有class定义。这里是把动作区间改成5个。

在envs/_init_.py的末尾加上
from highway_env.envs.test_env import *
在highway-env文件夹里找到一个单独的_init_.py,不是上一步的python文件!修改如下:
def register_highway_envs():    """Import the envs module so that envs register themselves."""    # my test environment    register(        id='test-v0',# 引用名        entry_point='highway_env.envs:test'#环境类名    )
修改奖励,来到你的定义环境文件highway-env/envs/test_env.py里面,看到_reward函数,以及和它有关的_agent_reward函数等,可自行改掉算子。utils.py中有函数lmap()。
def _reward(self, action: int) -> float:    """Aggregated reward, for cooperative agents."""    return sum(self._agent_reward(action, vehicle) for vehicle in self.controlled_vehicles                   ) / len(self.controlled_vehicles)def _agent_reward(self, action: int, vehicle: Vehicle) -> float:    """Per-agent reward signal."""    rewards = self._agent_rewards(action, vehicle)    reward = sum(self.config.get(name, 0) * reward for name, reward in rewards.items())    reward = self.config["arrived_reward"] if rewards["arrived_reward"] else reward    reward *= rewards["on_road_reward"]    if self.config["normalize_reward"]:        reward = utils.lmap(reward, [self.config["collision_reward"], self.config["arrived_reward"]], [0, 1])    return rewarddef _agent_rewards(self, action: int, vehicle: Vehicle) -> Dict[Text, float]:    """Per-agent per-objective reward signal."""    scaled_speed = utils.lmap(vehicle.speed, self.config["reward_speed_range"], [0, 1])    return {            "collision_reward": vehicle.crashed,            "high_speed_reward": np.clip(scaled_speed, 0, 1),            "arrived_reward": self.has_arrived(vehicle),            "on_road_reward": vehicle.on_road        }
引用自定义环境如下:
import highway-envimport gymenv = gym.make("test-v0")env.reset()
我自定义的环境文件,个人设定,不代表最佳结果:
from typing import Dict, Tuple, Textimport numpy as npfrom highway_env import utilsfrom highway_env.envs.common.abstract import AbstractEnv, MultiAgentWrapperfrom highway_env.road.lane import LineType, StraightLane, CircularLane, AbstractLanefrom highway_env.road.regulation import RegulatedRoadfrom highway_env.road.road import RoadNetworkfrom highway_env.vehicle.kinematics import Vehiclefrom highway_env.vehicle.controller import ControlledVehicleclass test(AbstractEnv):    #    # ACTIONS: Dict[int, str] = {    #     0: 'SLOWER',    #     1: 'IDLE',    #     2: 'FASTER'    # }    ACTIONS: Dict[int, str] = {        0: 'LANE_LEFT',        1: 'IDLE',        2: 'LANE_RIGHT',        3: 'FASTER',        4: 'SLOWER'    }    ACTIONS_INDEXES = {v: k for k, v in ACTIONS.items()}    @classmethod    def default_config(cls) -> dict:        config = super().default_config()        config.update({            "observation": {                "type": "Kinematics",                "vehicles_count": 15,                "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],                "features_range": {                    "x": [-100, 100],                    "y": [-100, 100],                    "vx": [-20, 20],                    "vy": [-20, 20],                },                "absolute": True,                "flatten": False,                "observe_intentions": False            },            "action": {                "type": "DiscreteMetaAction",                "longitudinal": True,                "lateral": True,                "target_speeds": [0, 4.5, 9]            },            "duration": 13,  # [s]            "destination": "o1",            "controlled_vehicles": 1,            "initial_vehicle_count": 10,            "spawn_probability": 0.6,            "screen_width": 600,            "screen_height": 600,            "centering_position": [0.5, 0.6],            "scaling": 5.5 * 1.3,            "collision_reward": -10,            "high_speed_reward": 2,            "arrived_reward": 5,            "reward_speed_range": [7.0, 9.0],# change            "normalize_reward": False,            "offroad_terminal": False        })        return config    def _reward(self, action: int) -> float:        """Aggregated reward, for cooperative agents."""        return sum(self._agent_reward(action, vehicle) for vehicle in self.controlled_vehicles                   ) / len(self.controlled_vehicles)    def _rewards(self, action: int) -> Dict[Text, float]:        """Multi-objective rewards, for cooperative agents."""        agents_rewards = [self._agent_rewards(action, vehicle) for vehicle in self.controlled_vehicles]        return {            name: sum(agent_rewards[name] for agent_rewards in agents_rewards) / len(agents_rewards)            for name in agents_rewards[0].keys()        }    # edit your reward    def _agent_reward(self, action: int, vehicle: Vehicle) -> float:        """Per-agent reward signal."""        rewards = self._agent_rewards(action, vehicle)        reward = sum(self.config.get(name, 0) * reward for name, reward in rewards.items())        reward = self.config["arrived_reward"] if rewards["arrived_reward"] else reward        reward *= rewards["on_road_reward"]        if self.config["normalize_reward"]:            reward = utils.lmap(reward, [self.config["collision_reward"], self.config["arrived_reward"]], [0, 1])        return reward    def _agent_rewards(self, action: int, vehicle: Vehicle) -> Dict[Text, float]:        """Per-agent per-objective reward signal."""        scaled_speed = utils.lmap(vehicle.speed, self.config["reward_speed_range"], [0, 1])        return {            "collision_reward": vehicle.crashed,            "high_speed_reward": np.clip(scaled_speed, 0, 1),            "arrived_reward": self.has_arrived(vehicle),            "on_road_reward": vehicle.on_road        }    def _is_terminated(self) -> bool:        return any(vehicle.crashed for vehicle in self.controlled_vehicles) \               or all(self.has_arrived(vehicle) for vehicle in self.controlled_vehicles) \               or (self.config["offroad_terminal"] and not self.vehicle.on_road)    def _agent_is_terminal(self, vehicle: Vehicle) -> bool:        """The episode is over when a collision occurs or when the access ramp has been passed."""        return (vehicle.crashed or                self.has_arrived(vehicle) or                self.time >= self.config["duration"])    def _is_truncated(self) -> bool:        return    def _info(self, obs: np.ndarray, action: int) -> dict:        info = super()._info(obs, action)        info["agents_rewards"] = tuple(self._agent_reward(action, vehicle) for vehicle in self.controlled_vehicles)        info["agents_dones"] = tuple(self._agent_is_terminal(vehicle) for vehicle in self.controlled_vehicles)        return info    def _reset(self) -> None:        self._make_road()        self._make_vehicles(self.config["initial_vehicle_count"])    def step(self, action: int) -> Tuple[np.ndarray, float, bool, bool, dict]:        obs, reward, terminated, truncated, info = super().step(action)        self._clear_vehicles()        self._spawn_vehicle(spawn_probability=self.config["spawn_probability"])        return obs, reward, terminated, truncated, info    def _make_road(self) -> None:        """        Make an 4-way intersection.        The horizontal road has the right of way. More precisely, the levels of priority are:            - 3 for horizontal straight lanes and right-turns            - 1 for vertical straight lanes and right-turns            - 2 for horizontal left-turns            - 0 for vertical left-turns        The code for nodes in the road network is:        (o:outer | i:inner + [r:right, l:left]) + (0:south | 1:west | 2:north | 3:east)        :return: the intersection road        """        lane_width = AbstractLane.DEFAULT_WIDTH        right_turn_radius = lane_width + 5  # [m}        left_turn_radius = right_turn_radius + lane_width  # [m}        outer_distance = right_turn_radius + lane_width / 2        access_length = 50 + 50  # [m]        net = RoadNetwork()        n, c, s = LineType.NONE, LineType.CONTINUOUS, LineType.STRIPED        for corner in range(4):            angle = np.radians(90 * corner)            is_horizontal = corner % 2            priority = 3 if is_horizontal else 1            rotation = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])            # Incoming            start = rotation @ np.array([lane_width / 2, access_length + outer_distance])            end = rotation @ np.array([lane_width / 2, outer_distance])            net.add_lane("o" + str(corner), "ir" + str(corner),                         StraightLane(start, end, line_types=[s, c], priority=priority, speed_limit=10))            # Right turn            r_center = rotation @ (np.array([outer_distance, outer_distance]))            net.add_lane("ir" + str(corner), "il" + str((corner - 1) % 4),                         CircularLane(r_center, right_turn_radius, angle + np.radians(180), angle + np.radians(270),                                      line_types=[n, c], priority=priority, speed_limit=10))            # Left turn            l_center = rotation @ (np.array([-left_turn_radius + lane_width / 2, left_turn_radius - lane_width / 2]))            net.add_lane("ir" + str(corner), "il" + str((corner + 1) % 4),                         CircularLane(l_center, left_turn_radius, angle + np.radians(0), angle + np.radians(-90),                                      clockwise=False, line_types=[n, n], priority=priority - 1, speed_limit=10))            # Straight            start = rotation @ np.array([lane_width / 2, outer_distance])            end = rotation @ np.array([lane_width / 2, -outer_distance])            net.add_lane("ir" + str(corner), "il" + str((corner + 2) % 4),                         StraightLane(start, end, line_types=[s, n], priority=priority, speed_limit=10))            # Exit            start = rotation @ np.flip([lane_width / 2, access_length + outer_distance], axis=0)            end = rotation @ np.flip([lane_width / 2, outer_distance], axis=0)            net.add_lane("il" + str((corner - 1) % 4), "o" + str((corner - 1) % 4),                         StraightLane(end, start, line_types=[n, c], priority=priority, speed_limit=10))        road = RegulatedRoad(network=net, np_random=self.np_random, record_history=self.config["show_trajectories"])        self.road = road    def _make_vehicles(self, n_vehicles: int = 10) -> None:        """        Populate a road with several vehicles on the highway and on the merging lane        :return: the ego-vehicle        """        # Configure vehicles        vehicle_type = utils.class_from_path(self.config["other_vehicles_type"])        vehicle_type.DISTANCE_WANTED = 5  # Low jam distance        vehicle_type.COMFORT_ACC_MAX = 6        vehicle_type.COMFORT_ACC_MIN = -3        # Random vehicles        simulation_steps = 3        for t in range(n_vehicles - 1):            self._spawn_vehicle(np.linspace(0, 80, n_vehicles)[t])        for _ in range(simulation_steps):            [(self.road.act(), self.road.step(1 / self.config["simulation_frequency"])) for _ in range(self.config["simulation_frequency"])]        # Challenger vehicle        self._spawn_vehicle(60, spawn_probability=1, go_straight=True, position_deviation=0.1, speed_deviation=0)        # Controlled vehicles        self.controlled_vehicles = []        for ego_id in range(0, self.config["controlled_vehicles"]):            ego_lane = self.road.network.get_lane(("o{}".format(ego_id % 4), "ir{}".format(ego_id % 4), 0))            destination = self.config["destination"] or "o" + str(self.np_random.randint(1, 4))            ego_vehicle = self.action_type.vehicle_class(                             self.road,                             ego_lane.position(60 + 5*self.np_random.normal(1), 0),                             speed=ego_lane.speed_limit,                             heading=ego_lane.heading_at(60))            try:                ego_vehicle.plan_route_to(destination)                ego_vehicle.speed_index = ego_vehicle.speed_to_index(ego_lane.speed_limit)                ego_vehicle.target_speed = ego_vehicle.index_to_speed(ego_vehicle.speed_index)            except AttributeError:                pass            self.road.vehicles.append(ego_vehicle)            self.controlled_vehicles.append(ego_vehicle)            for v in self.road.vehicles:  # Prevent early collisions                if v is not ego_vehicle and np.linalg.norm(v.position - ego_vehicle.position) < 20:                    self.road.vehicles.remove(v)    def _spawn_vehicle(self,                       longitudinal: float = 0,                       position_deviation: float = 1.,                       speed_deviation: float = 1.,                       spawn_probability: float = 0.6,                       go_straight: bool = False) -> None:        if self.np_random.uniform() > spawn_probability:            return        route = self.np_random.choice(range(4), size=2, replace=False)        route[1] = (route[0] + 2) % 4 if go_straight else route[1]        vehicle_type = utils.class_from_path(self.config["other_vehicles_type"])        vehicle = vehicle_type.make_on_lane(self.road, ("o" + str(route[0]), "ir" + str(route[0]), 0),                                            longitudinal=(longitudinal + 5                                                          + self.np_random.normal() * position_deviation),                                            speed=8 + self.np_random.normal() * speed_deviation)        for v in self.road.vehicles:            if np.linalg.norm(v.position - vehicle.position) < 15:                return        vehicle.plan_route_to("o" + str(route[1]))        vehicle.randomize_behavior()        self.road.vehicles.append(vehicle)        return vehicle    def _clear_vehicles(self) -> None:        is_leaving = lambda vehicle: "il" in vehicle.lane_index[0] and "o" in vehicle.lane_index[1] \                                     and vehicle.lane.local_coordinates(vehicle.position)[0] \                                     >= vehicle.lane.length - 4 * vehicle.LENGTH        self.road.vehicles = [vehicle for vehicle in self.road.vehicles if                              vehicle in self.controlled_vehicles or not (is_leaving(vehicle) or vehicle.route is None)]    def has_arrived(self, vehicle: Vehicle, exit_distance: float = 25) -> bool:        return "il" in vehicle.lane_index[0] \               and "o" in vehicle.lane_index[1] \               and vehicle.lane.local_coordinates(vehicle.position)[0] >= exit_distance

哦,都要一个可视化是吧?来了来了。

在test-v0下,用double_dqn.py训练的图:(action_dim==5)

目前是单智能体,后续的多智能体需要调整输入的数据和动作,以及控制小车的数量,做为后续的待定改进点。

其他?等我写好 多智能体 0-0!

待好心人补充....毕竟这里是无人区啊(悲)

 终有一日,我会成为神一样的提纳里先生!


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/59297.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1