当前位置:首页 » 《随便一记》 » 正文

数据分析入门指南:用 Python 开启数据之旅

21 人参与  2024年03月20日 14:17  分类 : 《随便一记》  评论

点击全文阅读


文章目录

前言发现宝藏为什么选择 Python 进行数据分析?准备工作数据分析基础1. 数据加载2. 数据探索3. 数据清洗4. 数据可视化 探索更多可能性好书推荐总结

前言

为了巩固所学的知识,作者尝试着开始发布一些学习笔记类的博客,方便日后回顾。当然,如果能帮到一些萌新进行新技术的学习那也是极好的。作者菜菜一枚,文章中如果有记录错误,欢迎读者朋友们批评指正。
(博客的参考源码可以在我主页的资源里找到,如果在学习的过程中有什么疑问欢迎大家在评论区向我提出)

发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。

在当今信息爆炸的时代,数据已经成为了我们生活和工作中不可或缺的一部分。从业务决策到科学研究,数据分析都扮演着至关重要的角色。而 Python,作为一种强大且易学的编程语言,已经成为了数据分析的首选工具之一。本篇博客将带你进入数据分析的世界,以 Python 为工具,探索数据的奥秘。

为什么选择 Python 进行数据分析?

Python 之所以成为数据分析的首选语言,有以下几个原因:

易学易用:Python 的语法简洁清晰,易于上手,即使是没有编程经验的初学者也能迅速掌握。丰富的库支持:Python 生态系统中拥有丰富的数据分析库,如 NumPy、Pandas、Matplotlib、Seaborn 等,可以满足各种数据处理、分析和可视化的需求。广泛应用: Python 在科学计算、数据挖掘、机器学习等领域应用广泛,拥有庞大的社区和活跃的开发者群体,可以快速解决问题并获取帮助。

准备工作

在开始数据分析之前,我们需要准备好以下工具和环境:

Python 解释器: 在你的计算机上安装 Python 解释器,推荐使用 Anaconda 或 Miniconda,它们自带了常用的数据分析库。数据集: 准备一些感兴趣的数据集,可以从 Kaggle、UCI Machine Learning Repository 等网站下载。

数据分析基础

1. 数据加载

使用 Pandas 库可以轻松地加载各种格式的数据,如 CSV、Excel、JSON 等。

import pandas as pd# 从 CSV 文件加载数据data = pd.read_csv('data.csv')

2. 数据探索

一旦数据加载完成,我们可以开始对数据进行探索性分析,了解数据的结构、特征和分布情况。

# 查看数据的前几行print(data.head())# 获取数据的统计摘要print(data.describe())# 查看数据的列名print(data.columns)# 统计数据的缺失值print(data.isnull().sum())

3. 数据清洗

数据清洗是数据分析过程中的重要步骤,包括处理缺失值、异常值和重复值等。

# 处理缺失值data.dropna(inplace=True)# 处理重复值data.drop_duplicates(inplace=True)

4. 数据可视化

数据可视化是理解数据的重要途径,可以使用 Matplotlib 和 Seaborn 库进行数据可视化。

import matplotlib.pyplot as pltimport seaborn as sns# 绘制柱状图sns.countplot(x='column_name', data=data)plt.title('Title of the Plot')plt.xlabel('X Label')plt.ylabel('Y Label')plt.show()

探索更多可能性

以上仅是数据分析的入门介绍,数据分析的领域和技术涵盖广泛,还有更多深入的内容等待你去探索和学习,比如特征工程、机器学习建模等。
通过学习 Python 数据分析,你可以从数据中发现有趣的模式、洞察用户行为、优化业务流程,甚至是开展科学研究。让我们一起踏上数据之旅,探索数据的无限可能!

好书推荐

【京东购买链接 】
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

总结

以上就是关于使用 Python 进行数据分析的入门指南,希望能够为你提供一些启发和帮助。如果你对数据分析有更多兴趣,不妨深入学习,掌握更多高级技术和方法。愿你在数据分析的道路上不断前行,不断进步!


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/82280.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

最新文章

  • 林语熙周晏京(离婚后,老公天天跪求复合全集阅读)最新章节免费在线阅读_《离婚后,老公天天跪求复合全集阅读》最新热门小说 -
  • 顾绫雪嬴政《被始皇读心后,文武百官卷疯了!完结版阅读》完整版免费在线阅读_(顾绫雪嬴政)全集免费阅读 -
  • 情深意长皆成空完整版阅读(沈卿林砚辞)抖音热文_《情深意长皆成空完整版阅读》最新章节免费在线阅读 -
  • 姐姐为暴富重伤傅家金孙后火葬场了全集阅读小说(傅延江瑶)全文免费阅读无弹窗大结局_(姐姐为暴富重伤傅家金孙后火葬场了全集阅读免费阅读全文大结局)最新章节列表_笔趣阁(姐姐为暴富重伤傅家金孙后火葬场了全集阅读) -
  • 乔以诺萧瑾淮(不是你好是我好全集阅读)精彩试读_《不是你好是我好全集阅读》全本阅读 -
  • 白月光双双《重生后我成全老公和白月光,他却急了全集》全文免费阅读无弹窗大结局_(白月光双双)最新章节免费在线阅读 -
  • 苏小枫苏末小说免费笔趣阁_苏小枫苏末小说全章完本大结局
  • 死遁后他疯了最新小说全文阅读_最新免费小说沈轻洲林梦江之雪_完本小说(死遁后他疯了)
  • 免费小说《顾里宋婷婷小岳欧颖倩》已完结(顾里宋婷婷小岳欧颖倩)热门小说大结局全文阅读笔趣阁
  • 侄子为求富贵,变性后全家后悔最新小说_免费小说全文阅读(苏小枫苏末)_侄子为求富贵,变性后全家后悔苏小枫苏末小说推荐完结
  • 最新《沈轻洲林梦江之雪》小说(全集完整新上小说大结局(沈轻洲林梦江之雪))全文阅读笔趣阁
  • 拒绝嫁给姐夫后,我在八零年代暴富了(陈小棠沈正韩)阅读 -

    关于我们 | 我要投稿 | 免责申明

    Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1