当前位置:首页 » 《休闲阅读》 » 正文

用Flask搭建简单的web模型部署服务

20 人参与  2024年03月24日 12:10  分类 : 《休闲阅读》  评论

点击全文阅读


目录结构如下:
在这里插入图片描述

分类模型web部署

classification.py

import osimport cv2import numpy as npimport onnxruntimefrom flask import Flask, render_template, request, jsonify  app = Flask(__name__)onnx_session = onnxruntime.InferenceSession("mobilenet_v2.onnx", providers=['CPUExecutionProvider'])input_name = []for node in onnx_session.get_inputs():    input_name.append(node.name)output_name = []for node in onnx_session.get_outputs():    output_name.append(node.name)def allowed_file(filename):    return '.' in filename and filename.rsplit('.', 1)[1] in set(['bmp', 'jpg', 'JPG', 'png', 'PNG'])def preprocess(image):    if image.shape[0] < image.shape[1]: #h<w        image = cv2.resize(image, (int(256*image.shape[1]/image.shape[0]), 256))    else:        image = cv2.resize(image, (256, int(256*image.shape[0]/image.shape[1])))    crop_size = min(image.shape[0], image.shape[1])    left = int((image.shape[1]-crop_size)/2)    top = int((image.shape[0]-crop_size)/2)    image_crop = image[top:top+crop_size, left:left+crop_size]    image_crop = cv2.resize(image_crop, (224,224))    image_crop = image_crop[:,:,::-1].transpose(2,0,1).astype(np.float32)   #BGR2RGB和HWC2CHW    image_crop[0,:] = (image_crop[0,:] - 123.675) / 58.395       image_crop[1,:] = (image_crop[1,:] - 116.28) / 57.12    image_crop[2,:] = (image_crop[2,:] - 103.53) / 57.375    return  np.expand_dims(image_crop, axis=0)   @app.route('/classification', methods=['POST', 'GET'])  # 添加路由def classification():    if request.method == 'POST':        f = request.files['file']        if not (f and allowed_file(f.filename)):            return jsonify({"error": 1001, "msg": "only support image formats: .bmp .png .PNG .jpg .JPG"})         basepath = os.path.dirname(__file__)  # 当前文件所在路径        upload_path = os.path.join(basepath, 'static/images/temp.jpg')  # 注意:没有的文件夹一定要先创建,不然会提示没有该路径        f.save(upload_path)         image = cv2.imread(upload_path)             tensor = preprocess(image)        inputs = {}        for name in input_name:            inputs[name] = tensor           outputs = onnx_session.run(None, inputs)[0]        label = np.argmax(outputs)        score = np.exp(outputs[0][label]) / np.sum(np.exp(outputs), axis=1)                return render_template('classification.html', label=label, score=score[0])        return render_template('upload.html')  if __name__ == '__main__':    app.run(host='0.0.0.0', port=8000, debug=True)

classification.html

<!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8"></head><body>    <h1>请上传本地图片</h1>    <form action="" enctype='multipart/form-data' method='POST'>        <input type="file" name="file" style="margin-top:20px;"/>        <input type="submit" value="上传" class="button-new" style="margin-top:15px;"/>    </form>    <h2>图片类别为:{{label}}        置信度为:{{score}} </h2>    <img src="{{ url_for('static', filename= './images/temp.jpg') }}"  alt="你的图片被外星人劫持了~~"/></body></html>

运行程序,在浏览器输入http://127.0.0.1:8000/classification,效果展示:
在这里插入图片描述

检测模型web部署

detection.py

import osimport cv2import numpy as npimport onnxruntimefrom flask import Flask, render_template, request, jsonify  app = Flask(__name__)class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',        'hair drier', 'toothbrush'] #coco80类别      input_shape = (640, 640) score_threshold = 0.2  nms_threshold = 0.5confidence_threshold = 0.2   onnx_session = onnxruntime.InferenceSession("yolov5n.onnx", providers=['CPUExecutionProvider'])input_name = []for node in onnx_session.get_inputs():    input_name.append(node.name)output_name = []for node in onnx_session.get_outputs():    output_name.append(node.name)def allowed_file(filename):    return '.' in filename and filename.rsplit('.', 1)[1] in set(['bmp', 'jpg', 'JPG', 'png', 'PNG'])def nms(boxes, scores, score_threshold, nms_threshold):    x1 = boxes[:, 0]    y1 = boxes[:, 1]    x2 = boxes[:, 2]    y2 = boxes[:, 3]    areas = (y2 - y1 + 1) * (x2 - x1 + 1)    keep = []    index = scores.argsort()[::-1]     while index.size > 0:        i = index[0]        keep.append(i)        x11 = np.maximum(x1[i], x1[index[1:]])         y11 = np.maximum(y1[i], y1[index[1:]])        x22 = np.minimum(x2[i], x2[index[1:]])        y22 = np.minimum(y2[i], y2[index[1:]])        w = np.maximum(0, x22 - x11 + 1)                                      h = np.maximum(0, y22 - y11 + 1)         overlaps = w * h        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)        idx = np.where(ious <= nms_threshold)[0]        index = index[idx + 1]    return keepdef xywh2xyxy(x):    y = np.copy(x)    y[:, 0] = x[:, 0] - x[:, 2] / 2    y[:, 1] = x[:, 1] - x[:, 3] / 2    y[:, 2] = x[:, 0] + x[:, 2] / 2    y[:, 3] = x[:, 1] + x[:, 3] / 2    return ydef filter_box(outputs): #过滤掉无用的框        outputs = np.squeeze(outputs)    outputs = outputs[outputs[..., 4] > confidence_threshold]    classes_scores = outputs[..., 5:]         boxes = []    scores = []    class_ids = []    for i in range(len(classes_scores)):        class_id = np.argmax(classes_scores[i])        outputs[i][4] *= classes_scores[i][class_id]        outputs[i][5] = class_id        if outputs[i][4] > score_threshold:            boxes.append(outputs[i][:6])            scores.append(outputs[i][4])            class_ids.append(outputs[i][5])    if len(boxes) == 0 :        return          boxes = np.array(boxes)    boxes = xywh2xyxy(boxes)    scores = np.array(scores)    indices = nms(boxes, scores, score_threshold, nms_threshold)     output = boxes[indices]    return outputdef letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):    # Resize and pad image while meeting stride-multiple constraints    shape = im.shape[:2]  # current shape [height, width]    # Scale ratio (new / old)    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])        # Compute padding    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))        dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding     top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))        if shape[::-1] != new_unpad:  # resize        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border    return imdef scale_boxes(boxes, shape):     # Rescale boxes (xyxy) from input_shape to shape    gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new    pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding    boxes[..., [0, 2]] -= pad[0]  # x padding    boxes[..., [1, 3]] -= pad[1]  # y padding    boxes[..., :4] /= gain    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2    return boxesdef draw(image, box_data):    box_data = scale_boxes(box_data, image.shape)    boxes = box_data[...,:4].astype(np.int32)     scores = box_data[...,4]    classes = box_data[...,5].astype(np.int32)       for box, score, cl in zip(boxes, scores, classes):        top, left, right, bottom = box        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)def preprocess(img):    input = letterbox(img, input_shape)    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)    input = input / 255.0    input = np.expand_dims(input, axis=0)    return input  @app.route('/detection', methods=['POST', 'GET'])  # 添加路由def detection():    if request.method == 'POST':        f = request.files['file']        if not (f and allowed_file(f.filename)):            return jsonify({"error": 1001, "msg": "only support image formats: .bmp .png .PNG .jpg .JPG"})         basepath = os.path.dirname(__file__)  # 当前文件所在路径        upload_path = os.path.join(basepath, 'static/images/temp.jpg')  # 注意:没有的文件夹一定要先创建,不然会提示没有该路径        f.save(upload_path)         image = cv2.imread(upload_path)             tensor = preprocess(image)        inputs = {}        for name in input_name:            inputs[name] = tensor           outputs = onnx_session.run(None, inputs)[0]                boxes = filter_box(outputs)        if boxes is not None:            draw(image, boxes)        cv2.imwrite(os.path.join(basepath, 'static/images/temp.jpg'), image)                return render_template('detection.html')        return render_template('upload.html')  if __name__ == '__main__':    app.run(host='0.0.0.0', port=8000, debug=True)

detection.html

<!DOCTYPE html><html lang="en"><head>    <meta charset="UTF-8"></head><body>    <h1>请上传本地图片</h1>    <form action="" enctype='multipart/form-data' method='POST'>        <input type="file" name="file" style="margin-top:20px;"/>        <input type="submit" value="上传" class="button-new" style="margin-top:15px;"/>    </form>    <img src="{{ url_for('static', filename= './images/temp.jpg') }}"  alt="你的图片被外星人劫持了~~"/></body></html>

运行程序,在浏览器输入http://127.0.0.1:8000/detection,效果展示:
在这里插入图片描述


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/84750.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1