当前位置:首页 » 《资源分享》 » 正文

c++STL容器中vector的使用,模拟实现及迭代器使用注意事项和迭代器失效问题

0 人参与  2024年09月06日 10:45  分类 : 《资源分享》  评论

点击全文阅读


目录

前言:

1.vector的介绍及使用

1.2 vector的使用

  1.2 1 vector的定义

1.2 2 vector iterator(迭代器)的使用 

1.2.3 vector 空间增长问题 

1.2.4 vector 增删查改 

1.2.5vector 迭代器失效问题。

2.vector模拟实现 

2.1 std::vector的核心框架接口的模拟实现bit::vector

 2.2 使用memcpy拷贝问题

 


前言:

    在前面的章节我们已经接触过了关于STL的知识,也就是string类,我们详细介绍了string类的特性及使用,而严格来说string类并没有被归为STL中,因为string类的出现早于STL,string类的接口也比STL中的单个类多,使得string类较其他类显得冗余,这一期我们就要开始讲STL中的内容。

1.vector的介绍及使用

1. vector是表示可变大小数组的序列容器。
2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。

1.2 vector的使用

    vector的使用与string类相似,要实现一些基本的操作,如增,删,查,改这些操作,c++在库中都已经实现好了接口,我们只需要调用这些接口就可以实现对应的操作。c++如今的地位在很大程度上是因为引入了STL这块的内容。

  1.2 1 vector的定义

1.2 2 vector iterator(迭代器)的使用 

1.2.3 vector 空间增长问题 

(1)capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。 

(2)reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。

(3)resize在开空间的同时还会进行初始化,影响size。

// 测试vector的默认扩容机制void TestVectorExpand(){size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}}vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容making foo grow:capacity changed: 1capacity changed: 2capacity changed: 3capacity changed: 4capacity changed: 6capacity changed: 9capacity changed: 13capacity changed: 19capacity changed: 28capacity changed: 42capacity changed: 63capacity changed: 94capacity changed: 141g++运行结果:linux下使用的STL基本是按照2倍方式扩容making foo grow:capacity changed: 1capacity changed: 2capacity changed: 4capacity changed: 8capacity changed: 16capacity changed: 32capacity changed: 64capacity changed: 128

1.2.4 vector 增删查改 

    如果我们实现增删查改,只需要调用相应的接口就可以了 ,其中标重点的是我们在日常的开发使用vector中常用的接口,需要我们重点掌握。

1.2.5vector 迭代器失效问题。

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)

  对于vector可能会导致其迭代器失效的操作有

1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如一些常用的接口:resize、reserve、insert、assign、push_back等等。

#include <iostream>using namespace std;#include <vector>int main(){vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;}

2. 指定位置元素的删除操作--erase 

#include <iostream>using namespace std;#include <vector>int main(){int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。  

我们来看一个删除vector所有偶数的例子:

#include <iostream>using namespace std;#include <vector>int main(){vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;}

我们来运行一下这段代码:

可以看到程序直接崩溃了,这就是经典的迭代器失效的例子,这是为什么呢?我们画图来看:

    这是我们的vector刚开始的样子,  第一次进入循环先判断it指向的数1对2取模是否为0,结果不为零,所以it往后走来到了2的位置:

   在程序发现2模2为0后2就被删除了,3和4都往前移动一个位置,紧接着it也往前移动了一个位置:

 

此时end还不等于end,程序判断4模2为0后,又将4删除了,然后end往前一个位置,it又往后走一个位置:

可以看到,此时it指向了end后面的位置,而我们循环结束的条件是it等于end就结束,而it在end后面,他就会一直往后走,循环也无法停下来,不仅造成非法访问,也会使程序死循环,这也就是程序奔溃的原因。这个例子也再次告诉我们,如果我们使用erase删除了数据,那么就不要再使用pos了。 

3. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效:

#include <string>void TestString()迭代器失效解决办法:在使用前,对迭代器重新赋值即可。1.2.5 vector 在OJ中的使用。1. 只出现一次的数字i2. 杨辉三角OJ{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it);++it;}}

2.vector模拟实现 

 由于使用命名空间时,将函数的定义和声明分到不同的文件中会引起连结错误,所以我们分两个文件来实现vector,一个用来实现功能,一个用来测试。

2.1 std::vector的核心框架接口的模拟实现bit::vector

vector.h :

#pragma once#include<assert.h>#include<iostream>using namespace std;namespace Myvector{template<class T>class vector{public:typedef T* iterator;vector(){}vector(vector<T>& v){reserve(v.size());for (auto& ch : v){push_back(ch);}}~vector(){delete[] _start;_start = _finish = _end_of_storage = nullptr;}void swap(vector<T>& v1){std::swap(_start, v1._start);std::swap(_finish, v1._finish);std::swap(_end_of_storage, v1._end_of_storage);}vector<T>& operator=(vector<T> v){swap(v);return *this;}size_t size(){return _finish - _start;}size_t capacity(){return _end_of_storage - _start;}void reserve(size_t n){if (n > capacity()){size_t old_size = size();T* tmp = new T[n];memcpy(tmp, _start, size() * sizeof(T));delete _start;_start = tmp;_finish = _start + old_size;_end_of_storage = _start + n;}}void push_back(const T& x){if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;_finish++;}T& operator[](const T& x){return _start[x];}iterator begin(){return _start;}iterator end(){return _finish;}void pop_back(){--_finish;}void resize(size_t n, T val = T()){if (n < size()){_finish = _start + n;}else{reserve(n);while (_finish < _start + n){*_finish = val;_finish++;}}}void erase(iterator pos){assert(pos >= _start);assert(pos <= _finish);iterator it = pos + 1;while (it != end()){*(it - 1) = *it;++it;}--_finish;}void insert(iterator pos, const T& x){assert(pos >= _start);assert(pos <= _finish);if (_finish == _end_of_storage){size_t len = pos - _start;reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + len;}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;end--;}*pos = x;++_finish;}private:iterator _start = nullptr;iterator _finish = nullptr;iterator _end_of_storage = nullptr;};}

test.cpp :

#include"vector.h"namespace Myvector{void test(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.insert(v.begin() + 2, 40);for (size_t i = 0; i < v.size(); i++){cout << v[i] << " ";}cout << endl;vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;for (auto ch : v){cout << ch << " ";}cout << endl;v.erase(v.begin() + 2);v.resize(10, 1);for (auto ch : v){cout << ch << " ";}cout << endl;}void test02(){vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);for (auto ch : v){cout << ch << " ";}cout << endl;vector<int> v1;v1 = v;for (auto ch : v1){cout << ch << " ";}cout << endl;}}int main(){//Myvector::test();Myvector::test02();return 0;}

 2.2 使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main(){bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;}

 问题分析

1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
2. 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝

结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。 

本章完。 


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/156089.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1