当前位置:首页 » 《随便一记》 » 正文

手写数字识别及python实现

6 人参与  2022年11月08日 19:21  分类 : 《随便一记》  评论

点击全文阅读


目录

1、总体流程

2、代码实现

下载数据集

确定激活函数、损失函数、计算梯度函数等

神经网络的搭建

模型的训练与验证 

测试模型的泛化能力


1、总体流程

step1:下载数据集、读取数据
step2:搭建神经网络(确定输出层、隐藏层(层数)、输出层的结构)
step3:初始化偏置和权重
step4:设置损失函数、激活函数
step5:设置超参数
step6:神经网络训练数据(通过误差反向传播求导、学习)
step7:测试验证数据集(确定Loss、精确度)
step8:测试模型的泛化能力(输入自己手写的数字进行判断)

2、代码实现

下载数据集

# coding: utf-8try:    import urllib.requestexcept ImportError:    raise ImportError('You should use Python 3.x')import os.pathimport gzipimport pickleimport osimport numpy as npurl_base = 'http://yann.lecun.com/exdb/mnist/'key_file = {    'train_img':'train-images-idx3-ubyte.gz',    'train_label':'train-labels-idx1-ubyte.gz',    'test_img':'t10k-images-idx3-ubyte.gz',    'test_label':'t10k-labels-idx1-ubyte.gz'}dataset_dir = os.path.abspath('.')save_file = dataset_dir + "/mnist.pkl"train_num = 60000test_num = 10000img_dim = (1, 28, 28)img_size = 784def _download(file_name):    file_path = dataset_dir + "/" + file_name        if os.path.exists(file_path):        return    print("Downloading " + file_name + " ... ")    urllib.request.urlretrieve(url_base + file_name, file_path)    print("Done")    def download_mnist():    for v in key_file.values():       _download(v)        def _load_label(file_name):    file_path = dataset_dir + "/" + file_name        print("Converting " + file_name + " to NumPy Array ...")    with gzip.open(file_path, 'rb') as f:            labels = np.frombuffer(f.read(), np.uint8, offset=8)    print("Done")        return labelsdef _load_img(file_name):    file_path = dataset_dir + "/" + file_name        print("Converting " + file_name + " to NumPy Array ...")        with gzip.open(file_path, 'rb') as f:            data = np.frombuffer(f.read(), np.uint8, offset=16)    data = data.reshape(-1, img_size)    print("Done")        return data    def _convert_numpy():    dataset = {}    dataset['train_img'] =  _load_img(key_file['train_img'])    dataset['train_label'] = _load_label(key_file['train_label'])        dataset['test_img'] = _load_img(key_file['test_img'])    dataset['test_label'] = _load_label(key_file['test_label'])        return datasetdef init_mnist():    download_mnist()    dataset = _convert_numpy()    print("Creating pickle file ...")    with open(save_file, 'wb') as f:        pickle.dump(dataset, f, -1)    print("Done!")def _change_one_hot_label(X):    T = np.zeros((X.size, 10))    for idx, row in enumerate(T):        row[X[idx]] = 1            return T    def load_mnist(normalize=False, flatten=True, one_hot_label=False):    """读入MNIST数据集        Parameters    ----------    normalize : 将图像的像素值正规化为0.0~1.0    one_hot_label :         one_hot_label为True的情况下,标签作为one-hot数组返回        one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组    flatten : 是否将图像展开为一维数组        Returns    -------    (训练图像, 训练标签), (测试图像, 测试标签)    """    if not os.path.exists(save_file):        init_mnist()            with open(save_file, 'rb') as f:        dataset = pickle.load(f)        if normalize:        for key in ('train_img', 'test_img'):            dataset[key] = dataset[key].astype(np.float32)            dataset[key] /= 255.0                if one_hot_label:        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])        if not flatten:         for key in ('train_img', 'test_img'):            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) if __name__ == '__main__':    init_mnist()

确定激活函数、损失函数、计算梯度函数等

##激活函数def sigmoid(x):    return 1/(1+np.exp(-x))def softmax(x):    if x.ndim == 2:        x = x.T        x = x - np.max(x, axis=0)        y = np.exp(x) / np.sum(np.exp(x), axis=0)        return y.T     x = x - np.max(x) # 溢出对策    return np.exp(x) / np.sum(np.exp(x))def cross_entropy_error(y, t):    if y.ndim == 1:        t = t.reshape(1, t.size)        y = y.reshape(1, y.size)            # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引    if t.size == y.size:        t = t.argmax(axis=1)                 batch_size = y.shape[0]    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size# 计算梯度def numerical_gradient(f, x):    h = 1e-4 # 0.0001    grad = np.zeros_like(x)        it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])    while not it.finished:        idx = it.multi_index        tmp_val = x[idx]        x[idx] = float(tmp_val) + h        fxh1 = f(x) # f(x+h)                x[idx] = tmp_val - h         fxh2 = f(x) # f(x-h)        grad[idx] = (fxh1 - fxh2) / (2*h)                x[idx] = tmp_val # 还原值        it.iternext()               return graddef sigmoid_grad(x):    return (1.0 - sigmoid(x)) * sigmoid(x)

神经网络的搭建

class TwoLayerNet:    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):        # 初始化权重        self.params = {}        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)        self.params['b1'] = np.zeros(hidden_size)        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)        self.params['b2'] = np.zeros(output_size)    def predict(self, x):        W1, W2 = self.params['W1'], self.params['W2']        b1, b2 = self.params['b1'], self.params['b2']            a1 = np.dot(x, W1) + b1        z1 = sigmoid(a1)        a2 = np.dot(z1, W2) + b2        y = softmax(a2)                return y            # x:输入数据, t:监督数据    def loss(self, x, t):        y = self.predict(x)                return cross_entropy_error(y, t)        def accuracy(self, x, t):        y = self.predict(x)        y = np.argmax(y, axis=1)        t = np.argmax(t, axis=1)                accuracy = np.sum(y == t) / float(x.shape[0])        return accuracy            # x:输入数据, t:监督数据    def numerical_gradient(self, x, t):        loss_W = lambda W: self.loss(x, t)                grads = {}        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])                return grads            def gradient(self, x, t):        W1, W2 = self.params['W1'], self.params['W2']        b1, b2 = self.params['b1'], self.params['b2']        grads = {}                batch_num = x.shape[0]                # forward        a1 = np.dot(x, W1) + b1        z1 = sigmoid(a1)        a2 = np.dot(z1, W2) + b2        y = softmax(a2)                # backward        dy = (y - t) / batch_num        grads['W2'] = np.dot(z1.T, dy)        grads['b2'] = np.sum(dy, axis=0)                da1 = np.dot(dy, W2.T)        dz1 = sigmoid_grad(a1) * da1        grads['W1'] = np.dot(x.T, dz1)        grads['b1'] = np.sum(dz1, axis=0)        return grads

模型的训练与验证 

# 读入数据(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True,normalize=True, one_hot_label=True)network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)iters_num = 10000train_size = x_train.shape[0]batch_size = 100learning_rate = 0.1train_loss_list = []train_acc_list = []test_acc_list = []iter_per_epoch = max(train_size / batch_size, 1)for i in range(iters_num):    batch_mask = np.random.choice(train_size, batch_size)    x_batch = x_train[batch_mask]    t_batch = t_train[batch_mask]        # 梯度    #grad = network.numerical_gradient(x_batch, t_batch)    grad = network.gradient(x_batch, t_batch)        # 更新    for key in ('W1', 'b1', 'W2', 'b2'):        network.params[key] -= learning_rate * grad[key]        loss = network.loss(x_batch, t_batch)    train_loss_list.append(loss)        if i % iter_per_epoch == 0:        train_acc = network.accuracy(x_train, t_train)        test_acc = network.accuracy(x_test, t_test)        train_acc_list.append(train_acc)        test_acc_list.append(test_acc)        print(train_acc, test_acc)## 验证import matplotlib.pyplot as pltplt.subplot(1,2,1)plt.plot(np.arange(0,10000),train_loss_list)plt.title('Loss')plt.subplot(1,2,2)plt.plot(np.arange(0,np.size(train_acc_list)),train_acc_list,np.arange(0,np.size(test_acc_list)),test_acc_list)plt.title('accuracy')plt.show()

 训练过程中的误差和精确度变化:
 

测试模型的泛化能力

import cv2def img_show(name,img):    cv2.imshow(name,img)    cv2.waitKey(0)    cv2.destroyAllWindows()    def predict_img_num(filename, img_width, img_height, threshold, kernel_size):    img_original = cv2.imread(filename)    img = cv2.resize(img_original,(img_width,img_width),fx=1,fy=1)    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    ret, thresh2 = cv2.threshold(img_gray, threshold, 255, cv2.THRESH_BINARY)    kernel = np.ones(kernel_size,np.uint8)     thresh2 = cv2.erode(thresh2,kernel,iterations = 1)    ret, thresh2 = cv2.threshold(thresh2, threshold, 255, cv2.THRESH_BINARY_INV)    print(thresh2.shape)    img_show('test',thresh2)    thresh2 = thresh2.reshape(1,img_width*img_width)    a = network.predict(thresh2)    label = np.argmax(np.array(a))        return labelpredict_img_num('8.jpg',28,28,127,(3,3))

输入手写图片8:

输出结果:

 同样你也可以输入一些你自己手写的数字,来测试模型的泛化能力


点击全文阅读


本文链接:http://m.zhangshiyu.com/post/47558.html

<< 上一篇 下一篇 >>

  • 评论(0)
  • 赞助本站

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

关于我们 | 我要投稿 | 免责申明

Copyright © 2020-2022 ZhangShiYu.com Rights Reserved.豫ICP备2022013469号-1